language-icon Old Web
English
Sign In

Magneto-optic Kerr effect

In physics the magneto-optic Kerr effect (MOKE) or the surface magneto-optic Kerr effect (SMOKE) is one of the magneto-optic effects. It describes the changes to light reflected from a magnetized surface. It is used in materials science research in devices such as the Kerr microscope, to investigate the magnetization structure of materials. In physics the magneto-optic Kerr effect (MOKE) or the surface magneto-optic Kerr effect (SMOKE) is one of the magneto-optic effects. It describes the changes to light reflected from a magnetized surface. It is used in materials science research in devices such as the Kerr microscope, to investigate the magnetization structure of materials. Light that is reflected from a magnetized surface can change in both polarization and reflected intensity. The effect is similar to the Faraday effect: the Faraday effect describes changes to light transmitted through a magnetic material, while the Kerr effect describes changes to light reflected from a magnetic surface. Both effects result from the off-diagonal components of the dielectric tensor ε {displaystyle varepsilon } . These off-diagonal components give the magneto-optic material an anisotropic permittivity, meaning that its permittivity is different in different directions. The permittivity affects the speed of light in a material: v p = 1 ε μ {displaystyle v_{p}={frac {1}{sqrt {varepsilon mu }}}} where v p {displaystyle v_{p}} is the velocity of light through the material, ε {displaystyle varepsilon } is the material permittivity, and μ {displaystyle mu } is the magnetic permeability; and thus the speed of light varies depending on its orientation. This causes fluctuations in the phase of polarized incident light. MOKE can be further categorized by the direction of the magnetization vector with respect to the reflecting surface and the plane of incidence. When the magnetization vector is perpendicular to the reflection surface and parallel to the plane of incidence, the effect is called the polar Kerr effect. To simplify the analysis, near normal incidence is usually employed when doing experiments in the polar geometry. In the longitudinal effect, the magnetization vector is parallel to both the reflection surface and the plane of incidence. The longitudinal setup involves light reflected at an angle from the reflection surface and not normal to it, as is used for polar MOKE. In the same manner, linearly polarized light incident on the surface becomes elliptically polarized, with the change in polarization directly proportional to the component of magnetization that is parallel to the reflection surface and parallel to the plane of incidence. This elliptically polarized light to first-order has two perpendicular E {displaystyle E} vectors, namely the standard Fresnel amplitude coefficient of reflection r {displaystyle r} and the Kerr coefficient k {displaystyle k} . The Kerr coefficient is typically much smaller than the coefficient of reflection. When the magnetization is perpendicular to the plane of incidence and parallel to the surface it is said to be in the transverse configuration. In this case, the incident light is also not normal to the reflection surface but instead of measuring the polarity of the light after reflection, the reflectivity r {displaystyle r} is measured. This change in reflectivity is proportional to the component of magnetization that is perpendicular to the plane of incidence and parallel to the surface, as above. If the magnetization component points to the right of the incident plane, as viewed from the source, then the Kerr vector adds to the Fresnel amplitude vector and the intensity of the reflected light is | r + k | 2 {displaystyle |r+k|^{2}} . On the other hand, if the component of magnetization component points to the left of the incident plane as viewed from the source, the Kerr vector subtracts from the Fresnel amplitude and the reflected intensity is given by | r − k | 2 {displaystyle |r-k|^{2}} . In addition to the polar, longitudinal and transverse Kerr effect which depend linearly on the respective magnetization components, there are also higher order quadratic effects, for which the Kerr angle depends on product terms involving the polar, longitudinal and transverse magnetization components. Those effectsare referred to as Voigt effect or quadratic Kerr effect. Quadratic magneto-optic Kerr effect (QMOKE) is found strong in Heusler alloys such as Co2FeSi and Co2MnGe

[ "Magnetization", "Kerr effect" ]
Parent Topic
Child Topic
    No Parent Topic