language-icon Old Web
English
Sign In

Neutrino

A neutrino (/nuːˈtriːnoʊ/ or /njuːˈtriːnoʊ/) (denoted by the Greek letter ν) is a fermion (an elementary particle with half-integer spin) that interacts only via the weak subatomic force and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The mass of the neutrino is much smaller than that of the other known elementary particles. The weak force has a very short range, the gravitational interaction is extremely weak, and neutrinos, as leptons, do not participate in the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected. A neutrino (/nuːˈtriːnoʊ/ or /njuːˈtriːnoʊ/) (denoted by the Greek letter ν) is a fermion (an elementary particle with half-integer spin) that interacts only via the weak subatomic force and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The mass of the neutrino is much smaller than that of the other known elementary particles. The weak force has a very short range, the gravitational interaction is extremely weak, and neutrinos, as leptons, do not participate in the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected. Weak interactions create neutrinos in one of three leptonic flavors: electron neutrinos (νe), muon neutrinos (νμ), or tau neutrinos (ντ), in association with the corresponding charged lepton. Although neutrinos were long believed to be massless, it is now known that there are three discrete neutrino masses with different tiny values, but they do not correspond uniquely to the three flavors. A neutrino created with a specific flavor has an associated specific quantum superposition of all three mass states. As a result, neutrinos oscillate between different flavors in flight. For example, an electron neutrino produced in a beta decay reaction may interact in a distant detector as a muon or tau neutrino. Although only differences of squares of the three mass values are known as of 2016, cosmological observations imply that the sum of the three masses must be less than one millionth that of the electron. For each neutrino, there also exists a corresponding antiparticle, called an antineutrino, which also has half-integer spin and no electric charge. They are distinguished from the neutrinos by having opposite signs of lepton number and chirality. To conserve total lepton number, in nuclear beta decay, electron neutrinos appear together with only positrons (anti-electrons) or electron-antineutrinos, and electron antineutrinos with electrons or electron neutrinos. Neutrinos are created by various radioactive decays, including in beta decay of atomic nuclei or hadrons, nuclear reactions such as those that take place in the core of a star or artificially in nuclear reactors, nuclear bombs or particle accelerators, during a supernova, in the spin-down of a neutron star, or when accelerated particle beams or cosmic rays strike atoms. The majority of neutrinos in the vicinity of the Earth are from nuclear reactions in the Sun. In the vicinity of the Earth, about 65 billion (6.5×1010) solar neutrinos per second pass through every square centimeter perpendicular to the direction of the Sun. For study, neutrinos can be created artificially with nuclear reactors and particle accelerators. There is intense research activity involving neutrinos, with goals that include the determination of the three neutrino mass values, the measurement of the degree of CP violation in the leptonic sector (leading to leptogenesis); and searches for evidence of physics beyond the Standard Model of particle physics, such as neutrinoless double beta decay, which would be evidence for violation of lepton number conservation. Neutrinos can also be used for tomography of the interior of the earth. The neutrino was postulated first by Wolfgang Pauli in 1930 to explain how beta decay could conserve energy, momentum, and angular momentum (spin). In contrast to Niels Bohr, who proposed a statistical version of the conservation laws to explain the observed continuous energy spectra in beta decay, Pauli hypothesized an undetected particle that he called a 'neutron', using the same -on ending employed for naming both the proton and the electron. He considered that the new particle was emitted from the nucleus together with the electron or beta particle in the process of beta decay. James Chadwick discovered a much more massive neutral nuclear particle in 1932 and named it a neutron also, leaving two kinds of particles with the same name. Earlier (in 1930) Pauli had used the term 'neutron' for both the neutral particle that conserved energy in beta decay, and a presumed neutral particle in the nucleus; initially he did not consider these two neutral particles as distinct from each other. The word 'neutrino' entered the scientific vocabulary through Enrico Fermi, who used it during a conference in Paris in July 1932 and at the Solvay Conference in October 1933, where Pauli also employed it. The name (the Italian equivalent of 'little neutral one') was jokingly coined by Edoardo Amaldi during a conversation with Fermi at the Institute of Physics of via Panisperna in Rome, in order to distinguish this light neutral particle from Chadwick's heavy neutron. In Fermi's theory of beta decay, Chadwick's large neutral particle could decay to a proton, electron, and the smaller neutral particle (now called an electron antineutrino): Fermi's paper, written in 1934, unified Pauli's neutrino with Paul Dirac's positron and Werner Heisenberg's neutron–proton model and gave a solid theoretical basis for future experimental work. The journal Nature rejected Fermi's paper, saying that the theory was 'too remote from reality'. He submitted the paper to an Italian journal, which accepted it, but the general lack of interest in his theory at that early date caused him to switch to experimental physics.:24

[ "Quantum electrodynamics", "Quantum mechanics", "Particle physics", "Nuclear physics", "Type II supernova", "stellar core", "Left–right symmetry", "Flipped SU(5)", "diffuse flux" ]
Parent Topic
Child Topic
    No Parent Topic