language-icon Old Web
English
Sign In

Aerospace engineering

Aerospace engineering is the primary field of engineering concerned with the development of aircraft and spacecraft. It has two major and overlapping branches: aeronautical engineering and astronautical engineering. Avionics engineering is similar, but deals with the electronics side of aerospace engineering. Aerospace engineering is the primary field of engineering concerned with the development of aircraft and spacecraft. It has two major and overlapping branches: aeronautical engineering and astronautical engineering. Avionics engineering is similar, but deals with the electronics side of aerospace engineering. Aeronautical engineering was the original term for the field. As flight technology advanced to include craft operating in outer space (astronautics), the broader term 'aerospace engineering' has come into common use. Aerospace engineering, particularly the astronautics branch is often colloquially referred to as 'rocket science'. Flight vehicles are subjected to demanding conditions such as those caused by changes in atmospheric pressure and temperature, with structural loads applied upon vehicle components. Consequently, they are usually the products of various technological and engineering disciplines including aerodynamics, propulsion, avionics, materials science, structural analysis and manufacturing. The interaction between these technologies is known as aerospace engineering. Because of the complexity and number of disciplines involved, aerospace engineering is carried out by teams of engineers, each having their own specialized area of expertise. The origin of aerospace engineering can be traced back to the aviation pioneers around the late 19th to early 20th centuries, although the work of Sir George Cayley dates from the last decade of the 18th to mid-19th century. One of the most important people in the history of aeronautics, Cayley was a pioneer in aeronautical engineering and is credited as the first person to separate the forces of lift and drag, which are in effect on any flight vehicle. Early knowledge of aeronautical engineering was largely empirical with some concepts and skills imported from other branches of engineering. Scientists understood some key elements of aerospace engineering, like fluid dynamics, in the 18th century. Many years later after the successful flights by the Wright brothers, the 1910s saw the development of aeronautical engineering through the design of World War I military aircraft. Between World Wars I and II, great leaps were made in Aeronautical Engineering. The advent of mainstream civil aviation greatly accelerated this process. Notable airplanes of this era include the Curtiss JN 4, the Farman F.60 Goliath, and Fokker trimotor. Notable military airplanes of this period include the Mitsubishi A6M Zero, the Supermarine Spitfire and the Messerschmitt Bf 109 from Japan, Great Britain, and Germany respectively. A significant development in Aerospace engineering came with the first operational Jet engine-powered airplane, the Messerschmitt Me 262 which entered service in 1944 towards the end of the second World War. The first definition of aerospace engineering appeared in February 1958. The definition considered the Earth's atmosphere and the outer space as a single realm, thereby encompassing both aircraft (aero) and spacecraft (space) under a newly coined word aerospace. In response to the USSR launching the first satellite, Sputnik into space on October 4, 1957, U.S. aerospace engineers launched the first American satellite on January 31, 1958. The National Aeronautics and Space Administration was founded in 1958 as a response to the Cold War. In 1969, Apollo 11, the first manned space mission to the moon took place. It saw three astronauts enter orbit around the Moon, with two, Neil Armstrong and Buzz Aldrin, visiting the lunar surface. The third astronaut, Michael Collins, stayed in orbit to rendezvous with Armstrong and Aldrin after their visit to the lunar surface. Some of the elements of aerospace engineering are: The basis of most of these elements lies in theoretical physics, such as fluid dynamics for aerodynamics or the equations of motion for flight dynamics. There is also a large empirical component. Historically, this empirical component was derived from testing of scale models and prototypes, either in wind tunnels or in the free atmosphere. More recently, advances in computing have enabled the use of computational fluid dynamics to simulate the behavior of the fluid, reducing time and expense spent on wind-tunnel testing. Those studying hydrodynamics or Hydroacoustics often obtained degrees in Aerospace Engineering.

[ "Engineering", "Search and rescue", "Sleeve valve", "Hazard analysis", "Aircraft noise", "Hypomecis roboraria" ]
Parent Topic
Child Topic
    No Parent Topic