language-icon Old Web
English
Sign In

Fluorine

Fluorine is a chemical element with the symbol F and atomic number 9. It is the lightest halogen and exists as a highly toxic pale yellow diatomic gas at standard conditions. As the most electronegative element, it is extremely reactive, as it reacts with almost all other elements, except for helium and neon.n recognition of the great services rendered by him in his investigation and isolation of the element fluorine ... The whole world has admired the great experimental skill with which you have studied that savage beast among the elements.1887 drawing of Moissan's apparatusNobel Prize photo of Moissan Fluorine is a chemical element with the symbol F and atomic number 9. It is the lightest halogen and exists as a highly toxic pale yellow diatomic gas at standard conditions. As the most electronegative element, it is extremely reactive, as it reacts with almost all other elements, except for helium and neon. Among the elements, fluorine ranks 24th in universal abundance and 13th in terrestrial abundance. Fluorite, the primary mineral source of fluorine which gave the element its name, was first described in 1529; as it was added to metal ores to lower their melting points for smelting, the Latin verb fluo meaning 'flow' gave the mineral its name. Proposed as an element in 1810, fluorine proved difficult and dangerous to separate from its compounds, and several early experimenters died or sustained injuries from their attempts. Only in 1886 did French chemist Henri Moissan isolate elemental fluorine using low-temperature electrolysis, a process still employed for modern production. Industrial production of fluorine gas for uranium enrichment, its largest application, began during the Manhattan Project in World War II. Owing to the expense of refining pure fluorine, most commercial applications use fluorine compounds, with about half of mined fluorite used in steelmaking. The rest of the fluorite is converted into corrosive hydrogen fluoride en route to various organic fluorides, or into cryolite, which plays a key role in aluminium refining. Molecules containing a carbon–fluorine bond often have very high chemical and thermal stability; their major uses are as refrigerants, electrical insulation and cookware, the last as PTFE (Teflon). Pharmaceuticals such as atorvastatin and fluoxetine contain C-F bonds. The fluoride ion from dissolved fluoride salts inhibits dental cavities, and so finds use in toothpaste and water fluoridation. Global fluorochemical sales amount to more than US$15 billion a year. Fluorocarbon gases are generally greenhouse gases with global-warming potentials 100 to 20,000 times that of carbon dioxide. Organofluorine compounds often persist in the environment due to the strength of the carbon–fluorine bond. Fluorine has no known metabolic role in mammals; a few plants and sea sponges synthesize organofluorine poisons (most often monofluoroacetates) that help deter predation. Fluorine atoms have nine electrons, one fewer than neon, and electron configuration 1s22s22p5: two electrons in a filled inner shell and seven in an outer shell requiring one more to be filled. The outer electrons are ineffective at nuclear shielding, and experience a high effective nuclear charge of 9 − 2 = 7; this affects the atom's physical properties. Fluorine's first ionization energy is third-highest among all elements, behind helium and neon, which complicates the removal of electrons from neutral fluorine atoms. It also has a high electron affinity, second only to chlorine, and tends to capture an electron to become isoelectronic with the noble gas neon; it has the highest electronegativity of any element. Fluorine atoms have a small covalent radius of around 60 picometers, similar to those of its period neighbors oxygen and neon. The bond energy of difluorine is much lower than that of either Cl2 or Br2 and similar to the easily cleaved peroxide bond; this, along with high electronegativity, accounts for fluorine's easy dissociation, high reactivity, and strong bonds to non-fluorine atoms. Conversely, bonds to other atoms are very strong because of fluorine's high electronegativity. Unreactive substances like powdered steel, glass fragments, and asbestos fibers react quickly with cold fluorine gas; wood and water spontaneously combust under a fluorine jet. Reactions of elemental fluorine with metals require varying conditions. Alkali metals cause explosions and alkaline earth metals display vigorous activity in bulk; to prevent passivation from the formation of metal fluoride layers, most other metals such as aluminium and iron must be powdered, and noble metals require pure fluorine gas at 300–450 °C (575–850 °F). Some solid nonmetals (sulfur, phosphorus) react vigorously in liquid air temperature fluorine. Hydrogen sulfide and sulfur dioxide combine readily with fluorine, the latter sometimes explosively; sulfuric acid exhibits much less activity, requiring elevated temperatures. Hydrogen, like some of the alkali metals, reacts explosively with fluorine. Carbon, as lamp black, reacts at room temperature to yield fluoromethane. Graphite combines with fluorine above 400 °C (750 °F) to produce non-stoichiometric carbon monofluoride; higher temperatures generate gaseous fluorocarbons, sometimes with explosions. Carbon dioxide and carbon monoxide react at or just above room temperature, whereas paraffins and other organic chemicals generate strong reactions: even fully substituted haloalkanes such as carbon tetrachloride, normally incombustible, may explode. Although nitrogen trifluoride is stable, nitrogen requires an electric discharge at elevated temperatures for reaction with fluorine to occur, due to the very strong triple bond in elemental nitrogen; ammonia may react explosively. Oxygen does not combine with fluorine under ambient conditions, but can be made to react using electric discharge at low temperatures and pressures; the products tend to disintegrate into their constituent elements when heated. Heavier halogens react readily with fluorine as does the noble gas radon; of the other noble gases, only xenon and krypton react, and only under special conditions.

[ "Chemical engineering", "Organic chemistry", "Inorganic chemistry", "Metallurgy", "Chlorine fluoride", "Mottled teeth", "Strontium fluoride", "Fluoronium", "FLUORINE EXPOSURE" ]
Parent Topic
Child Topic
    No Parent Topic