language-icon Old Web
English
Sign In

Transferase

A transferase is any one of a class of enzymes that enact the transfer of specific functional groups (e.g. a methyl or glycosyl group) from one molecule (called the donor) to another (called the acceptor). They are involved in hundreds of different biochemical pathways throughout biology, and are integral to some of life’s most important processes.Some of the most important discoveries relating to transferases occurred as early as the 1930s. Earliest discoveries of transferase activity occurred in other classifications of enzymes, including Beta-galactosidase, protease, and acid/base phosphatase. Prior to the realization that individual enzymes were capable of such a task, it was believed that two or more enzymes enacted functional group transfers.Systematic names of transferases are constructed in the form of 'donor:acceptor grouptransferase.' For example, methylamine:L-glutamate N-methyltransferase would be the standard naming convention for the transferase methylamine-glutamate N-methyltransferase, where methylamine is the donor, L-glutamate is the acceptor, and methyltransferase is the EC category grouping. This same action by the transferase can be illustrated as follows:Described primarily based on the type of biochemical group transferred, transferases can be divided into ten categories (based on the EC Number classification). These categories comprise over 450 different unique enzymes. In the EC numbering system, transferases have been given a classification of EC2. Hydrogen is not considered a functional group when it comes to transferase targets; instead, hydrogen transfer is included under oxidoreductases, due to electron transfer considerations.EC 2.1 includes enzymes that transfer single-carbon groups. This category consists of transfers of methyl, hydroxymethyl, formyl, carboxy, carbamoyl, and amido groups. Carbamoyltransferases, as an example, transfer a carbamoyl group from one molecule to another. Carbamoyl groups follow the formula NH2CO. In ATCase such a transfer is written as Carbamyl phosphate + L-aspertate → {displaystyle ightarrow }   L-carbamyl aspartate + phosphate.The A and B transferases are the foundation of the human ABO blood group system. Both A and B transferases are glycosyltransferases, meaning they transfer a sugar molecule onto an H-antigen. This allows H-antigen to synthesize the glycoprotein and glycolipid conjugates that are known as the A/B antigens. The full name of A transferase is alpha 1-3-N-acetylgalactosaminyltransferase and its function in the cell is to add N-acetylgalactosamine to H-antigen, creating A-antigen.:55 The full name of B transferase is alpha 1-3-galactosyltransferase, and its function in the cell is to add a galactose molecule to H-antigen, creating B-antigen.Transferase deficiencies are at the root of many common illnesses. The most common result of a transferase deficiency is a buildup of a cellular product.Terminal transferases are transferases that can be used to label DNA or to produce plasmid vectors. It accomplishes both of these tasks by adding deoxynucleotides in the form of a template to the downstream end or 3' end of an existing DNA molecule.Terminal transferase is one of the few DNA polymerases that can function without an RNA primer.Many transferases associate with biological membranes as peripheral membrane proteins or anchored to membranes through a single transmembrane helix, for example numerous glycosyltransferases in Golgi apparatus. Some others are multi-span transmembrane proteins, for example certain Oligosaccharyltransferases or microsomal glutathione S-transferase from MAPEG family.

[ "Enzyme", "GGT DEFICIENCY", "UDP Glucuronyl Transferase", "A Transferase", "Beta-ketoadipate", "GlcNAc transferase" ]
Parent Topic
Child Topic
    No Parent Topic