language-icon Old Web
English
Sign In

Learning classifier system

Learning classifier systems, or LCS, are a paradigm of rule-based machine learning methods that combine a discovery component (e.g. typically a genetic algorithm) with a learning component (performing either supervised learning, reinforcement learning, or unsupervised learning). Learning classifier systems seek to identify a set of context-dependent rules that collectively store and apply knowledge in a piecewise manner in order to make predictions (e.g. behavior modeling, classification, data mining, regression, function approximation, or game strategy). This approach allows complex solution spaces to be broken up into smaller, simpler parts. Learning classifier systems, or LCS, are a paradigm of rule-based machine learning methods that combine a discovery component (e.g. typically a genetic algorithm) with a learning component (performing either supervised learning, reinforcement learning, or unsupervised learning). Learning classifier systems seek to identify a set of context-dependent rules that collectively store and apply knowledge in a piecewise manner in order to make predictions (e.g. behavior modeling, classification, data mining, regression, function approximation, or game strategy). This approach allows complex solution spaces to be broken up into smaller, simpler parts. The founding concepts behind learning classifier systems came from attempts to model complex adaptive systems, using rule-based agents to form an artificial cognitive system (i.e. artificial intelligence). The architecture and components of a given learning classifier system can be quite variable. It is useful to think of an LCS as a machine consisting of several interacting components. Components may be added or removed, or existing components modified/exchanged to suit the demands of a given problem domain (like algorithmic building blocks) or to make the algorithm flexible enough to function in many different problem domains. As a result, the LCS paradigm can be flexibly applied to many problem domains that call for machine learning. The major divisions among LCS implementations are as follows: (1) Michigan-style architecture vs. Pittsburgh-style architecture, (2) reinforcement learning vs. supervised learning, (3) incremental learning vs. batch learning, (4) online learning vs. offline learning, (5) strength-based fitness vs. accuracy-based fitness, and (6) complete action mapping vs best action mapping. These divisions are not necessarily mutually exclusive. For example, XCS, the best known and best studied LCS algorithm, is Michigan-style, was designed for reinforcement learning but can also perform supervised learning, applies incremental learning that can be either online or offline, applies accuracy-based fitness, and seeks to generate a complete action mapping.

[ "Unsupervised learning", "Reinforcement learning", "Artificial neural network", "Stability (learning theory)", "Leabra", "Sample exclusion dimension" ]
Parent Topic
Child Topic
    No Parent Topic