language-icon Old Web
English
Sign In

Galactic Center

The Galactic Center, or Galactic Centre, is the rotational center of the Milky Way. It is 8,122 ± 31 parsecs (26,490 ± 100 ly) away from Earth in the direction of the constellations Sagittarius, Ophiuchus, and Scorpius where the Milky Way appears brightest. It coincides with the compact radio source Sagittarius A*.A small portion of a gigapixel color mosaic of the Milky Way’s heart.Red giant stars coexist with white, Sun-like stars.White Dwarfs in Milky Way's Central HubThe center of the Milky Way – image taken by ISAAC, the VLT's near- and mid-infrared spectrometer and cameraInfrared image from Spitzer Space TelescopeA view of the night sky near Sagittarius, enhanced to show better contrast and detail in the dust lanes. The principal stars in Sagittarius are indicated in red.The central parts of the Milky Way, as observed in the near-infrared with the NACO instrument on ESO's Very Large TelescopeInfra-red image of the center of the Milky Way revealing a new population of massive starsDetection of an unusually bright X-ray flare from Sagittarius A*, a supermassive black hole in the center of the Milky Way galaxyThe center of the Milky Way, as imaged by 64 radio telescopes in the South African wilderness (via MeerKAT array). The Galactic Center, or Galactic Centre, is the rotational center of the Milky Way. It is 8,122 ± 31 parsecs (26,490 ± 100 ly) away from Earth in the direction of the constellations Sagittarius, Ophiuchus, and Scorpius where the Milky Way appears brightest. It coincides with the compact radio source Sagittarius A*. There are around 10 million stars within one parsec of the Galactic Center, dominated by red giants, with a significant population of massive supergiants and Wolf-Rayet stars from a star formation event around one million years ago, and one supermassive black hole of 4.100 ± 0.034 million solar masses at the Galactic Center, which powers the Sagittarius A* radio source. Because of interstellar dust along the line of sight, the Galactic Center cannot be studied at visible, ultraviolet, or soft (low-energy) X-ray wavelengths. The available information about the Galactic Center comes from observations at gamma ray, hard (high-energy) X-ray, infrared, submillimetre, and radio wavelengths. Immanuel Kant stated in General Natural History and Theory of the Heavens (1755) that a large star was at the center of the Milky Way Galaxy, and that Sirius might be the star. Harlow Shapley stated in 1918 that the halo of globular clusters surrounding the Milky Way seemed to be centered on the star swarms in the constellation of Sagittarius, but the dark molecular clouds in the area blocked the view for optical astronomy. In the early 1940s Walter Baade at Mount Wilson Observatory took advantage of wartime blackout conditions in nearby Los Angeles to conduct a search for the center with the 100-inch (250 cm) Hooker Telescope. He found that near the star Alnasl (Gamma Sagittarii) there is a one-degree-wide void in the interstellar dust lanes, which provides a relatively clear view of the swarms of stars around the nucleus of our Milky Way Galaxy. This gap has been known as Baade's Window ever since. At Dover Heights in Sydney, Australia, a team of radio astronomers from the Division of Radiophysics at the CSIRO, led by Joseph Lade Pawsey, used 'sea interferometry' to discover some of the first interstellar and intergalactic radio sources, including Taurus A, Virgo A and Centaurus A. By 1954 they had built an 80-foot (24 m) fixed dish antenna and used it to make a detailed study of an extended, extremely powerful belt of radio emission that was detected in Sagittarius. They named an intense point-source near the center of this belt Sagittarius A, and realised that it was located at the very center of our Galaxy, despite being some 32 degrees south-west of the conjectured galactic center of the time. In 1958 the International Astronomical Union (IAU) decided to adopt the position of Sagittarius A as the true zero co-ordinate point for the system of galactic latitude and longitude. In the equatorial coordinate system the location is: RA  17h 45m 40.04s, Dec −29° 00′ 28.1″ (J2000 epoch). The exact distance between the Solar System and the Galactic Center is not certain, although estimates since 2000 have remained within the range 24–28.4 kilolight-years (7.4–8.7 kiloparsecs). The latest estimates from geometric-based methods and standard candles yield the following distances to the Galactic Center: An accurate determination of the distance to the Galactic Center as established from variable stars (e.g. RR Lyrae variables) or standard candles (e.g. red-clump stars) is hindered by countless effects, which include: an ambiguous reddening law; a bias for smaller values of the distance to the Galactic Center because of a preferential sampling of stars toward the near side of the Galactic bulge owing to interstellar extinction; and an uncertainty in characterizing how a mean distance to a group of variable stars found in the direction of the Galactic bulge relates to the distance to the Galactic Center. The nature of the Milky Way's bar, which extends across the Galactic Center, is also actively debated, with estimates for its half-length and orientation spanning between 1–5 kpc (short or a long bar) and 10–50°. Certain authors advocate that the Milky Way features two distinct bars, one nestled within the other. The bar is delineated by red-clump stars (see also red giant); however, RR Lyrae variables do not trace a prominent Galactic bar. The bar may be surrounded by a ring called the 5-kpc ring that contains a large fraction of the molecular hydrogen present in the Milky Way, and most of the Milky Way's star formation activity. Viewed from the Andromeda Galaxy, it would be the brightest feature of the Milky Way.

[ "Galaxy", "Stars", "Galactic coordinate system", "Galactic quadrant", "Central Molecular Zone", "Great Annihilator", "Galactic ridge" ]
Parent Topic
Child Topic
    No Parent Topic