language-icon Old Web
English
Sign In

Identifiability

In statistics, identifiability is a property which a model must satisfy in order for precise inference to be possible. A model is identifiable if it is theoretically possible to learn the true values of this model's underlying parameters after obtaining an infinite number of observations from it. Mathematically, this is equivalent to saying that different values of the parameters must generate different probability distributions of the observable variables. Usually the model is identifiable only under certain technical restrictions, in which case the set of these requirements is called the identification conditions. In statistics, identifiability is a property which a model must satisfy in order for precise inference to be possible. A model is identifiable if it is theoretically possible to learn the true values of this model's underlying parameters after obtaining an infinite number of observations from it. Mathematically, this is equivalent to saying that different values of the parameters must generate different probability distributions of the observable variables. Usually the model is identifiable only under certain technical restrictions, in which case the set of these requirements is called the identification conditions. A model that fails to be identifiable is said to be non-identifiable or unidentifiable: two or more parametrizations are observationally equivalent. In some cases, even though a model is non-identifiable, it is still possible to learn the true values of a certain subset of the model parameters. In this case we say that the model is partially identifiable. In other cases it may be possible to learn the location of the true parameter up to a certain finite region of the parameter space, in which case the model is set identifiable. Aside from strictly theoretical exploration of the model properties, identifiability can be referred to in a wider scope when a model is tested with experimental data sets, using identifiability analysis. Let P = { P θ : θ ∈ Θ } {displaystyle {mathcal {P}}={P_{ heta }: heta in Theta }} be a statistical model where the parameter space Θ {displaystyle Theta } is either finite- or infinite-dimensional. We say that P {displaystyle {mathcal {P}}} is identifiable if the mapping θ ↦ P θ {displaystyle heta mapsto P_{ heta }} is one-to-one: This definition means that distinct values of θ should correspond to distinct probability distributions: if θ1≠θ2, then also Pθ1≠Pθ2. If the distributions are defined in terms of the probability density functions (pdfs), then two pdfs should be considered distinct only if they differ on a set of non-zero measure (for example two functions ƒ1(x) = 10 ≤ x < 1 and ƒ2(x) = 10 ≤ x ≤ 1 differ only at a single point x = 1 — a set of measure zero — and thus cannot be considered as distinct pdfs). Identifiability of the model in the sense of invertibility of the map θ ↦ P θ {displaystyle heta mapsto P_{ heta }} is equivalent to being able to learn the model's true parameter if the model can be observed indefinitely long. Indeed, if {Xt} ⊆ S is the sequence of observations from the model, then by the strong law of large numbers, for every measurable set A ⊆ S (here 1{...} is the indicator function). Thus, with an infinite number of observations we will be able to find the true probability distribution P0 in the model, and since the identifiability condition above requires that the map θ ↦ P θ {displaystyle heta mapsto P_{ heta }} be invertible, we will also be able to find the true value of the parameter which generated given distribution P0. Let P {displaystyle {mathcal {P}}} be the normal location-scale family:

[ "Algorithm", "Statistics", "Mathematical optimization", "Econometrics", "Machine learning", "non identifiability", "Identifiability analysis" ]
Parent Topic
Child Topic
    No Parent Topic