language-icon Old Web
English
Sign In

Myrmecodia

Myrmecodia is a genus of epiphytic myrmecophytes (mər′mek•ə‚fīt; literally 'ant-plant'), native to Southeast Asia, but also present in Indochina, Malaysia, the Southwest Pacific, the Philippines, Fiji, and extending south to Queensland and Cape York in Australia. It is one of five ant-plant genera in the family Rubiaceae, the others being Anthorrhiza, Hydnophytum, Myrmephytum, and Squamellaria. Myrmecophytes, or ant plants, live in a mutualistic association with a colony of ants. These plants possess structural adaptations that provide ants with food and/or shelter. Myrmecodia are also classified as ephiphytes. The term epiphytic derives from the Greek epi- (meaning 'upon') and phyton (meaning 'plant'). Epiphytic plants are sometimes called 'air plants' because they do not root in soil. An epiphyte is a plant that grows harmlessly upon another plant and derives its nutrition and water supply from the air and debris found in its immediate environment. Ephiphytes are a non-parasitic type of plant and differ from parasitic organisms in that this type of plant only relies on its host for physical support and does not necessarily have a negative effect on the host plant. Amongst the array of Myrmecodia plants and myrmecolphilious epiphytes, a vast diversity exists with plants that all have similar evolutionary adaptions. Structures such as modified rhizomes, stems, and leaves, which have evolved to naturally produce systems of tunnels and caverns within its various modified organs. In the case of Rubiaceous tuberous antplants such as Myrmecodia plants, which rank highest in number and diversity among the antplants, all have very large, tuberous, modified stems containing many chambers. This adaptation is to house colonies of arboreal ants, which live within the readymade chambers naturally grown by the plant. The tuber begins its growth with the swelling of the seedling hypocotyl. Later, the cavities are formed when cork-generating meristems arise in the inner parenchymatous tissue forming a cork-like wall, cutting off carious shaped and sized enclosures. The contents of these then die and dry off, leaving the chambers empty. Future ant inhabitants may clean out remnants of dead tissue but do not primarily excavate—this has been shown by the existence of chambers in plants to which ants never had access. It has been found that ants are not required for Myrmecodia to form the caudex, or tuberous inner chambers—they exist naturally in Myrmecodia with or without a population of ants. Cavities are found to be randomly but normally distributed within tubers, with no observable pattern or structure. Cavities are connected to the outer surface of the plant by small holes, which are naturally occurring and not created by ants. Hollow, smooth-walled tunnels form within the caudex with external entrance holes, providing an above-ground home for ant colonies. These holes function both as ventilation for both the plant’s living tissues as well as the ants, and serve as passageways in and out of the plant. Myrmecodia species from the family Rubiaceae have the most highly specialized inner chambers, divided into smooth-walled chambers, which are used by ants for nurseries, and rough-walled chambers, used for waste disposal, insect prey remains, and bodies of dead ants from the colony. The caverns with smooth walls have no observable nutrition uptake ability through their walls. Rough-walled chambers, on the other hand, are able to absorb nutrients. In an experiment done with india ink and water, the mixture was placed in both smooth and rough-walled chambers. The mixture was absorbed readily through the protrusions in the rough-walled chamber, but even after sitting on the smooth-walled chamber surface for 20 hours, no absorption was observed. The protrusions that make the walls rough are inward facing modified root structures that make nutritional uptake through the plant’s rough-walled chambers possible. The cavities are also a measure of fitness—a plant with more cavity area means that it has a lighter tuber. This is advantageous because in most cases, although the plants are grown in situ, the tubers become too heavy and fall off of the tree they germinate on, eventually dying on the ground. This suggests that there is a strong selection against heavy or massive tubers. From the alveoli emerge small white flowers which can self-pollinate to yield a bright orange, fleshy berry filled with up to six small seeds. Seed dispersal is by birds, that often deposit droppings on the branches and trunks of trees they land on. In this they resemble various parasitic plants such as the mistletoes in families such as Loranthaceae, Santalaceae, and Misodendraceae, but Myrmecodia species are unrelated to the true parasites, being in the coffee and gardenia family Rubiaceae.

[ "Ecology", "Botany", "Flavonoid", "Traditional medicine", "Hydnophytum" ]
Parent Topic
Child Topic
    No Parent Topic