language-icon Old Web
English
Sign In

Ochratoxin A

Ochratoxin A—a toxin produced by different Aspergillus and Penicillium species — is one of the most-abundant food-contaminating mycotoxins. It is also a frequent contaminant of water-damaged houses and of heating ducts. Human exposure can occur through consumption of contaminated food products, particularly contaminated grain and pork products, as well as coffee, wine grapes, and dried grapes. The toxin has been found in the tissues and organs of animals, including human blood and breast milk. Ochratoxin A, like most toxic substances, has large species- and sex-specific toxicological differences. Ochratoxin A—a toxin produced by different Aspergillus and Penicillium species — is one of the most-abundant food-contaminating mycotoxins. It is also a frequent contaminant of water-damaged houses and of heating ducts. Human exposure can occur through consumption of contaminated food products, particularly contaminated grain and pork products, as well as coffee, wine grapes, and dried grapes. The toxin has been found in the tissues and organs of animals, including human blood and breast milk. Ochratoxin A, like most toxic substances, has large species- and sex-specific toxicological differences. Ochratoxin A is potentially carcinogenic to humans (Group 2B), and has been shown to be weakly mutagenic, possibly by induction of oxidative DNA damage. The evidence in experimental animals is sufficient to indicate carcinogenicity of ochratoxin A. It was tested for carcinogenicity by oral administration in mice and rats. It slightly increased the incidence of hepatocellular carcinomas in mice of each sex. and produced renal adenomas and carcinomas in male mice and in rats (carcinomas in 46% of males and 5% of females).In humans, very little histology data are available, so a relationship between ochratoxin A and renal cell carcinoma has not been found. However, the incidence of transitional cell (urothelial) urinary cancers seems abnormally high in Balkan endemic nephropathy patients, especially for the upper urinary tract.The molecular mechanism of ochratoxin A carcinogenicity has been under debate due to conflicting literature, however this mycotoxin has been proposed to play a major role in reducing antioxidant defenses. Ochratoxin A has a strong affinity for the brain, especially the cerebellum (Purkinje cells), ventral mesencephalon, and hippocampal structures. The affinity for the hippocampus could be relevant to the pathogenesis of Alzheimer's disease, and subchronic administration to rodents induces hippocampal neurodegeneration. Ochratoxin causes acute depletion of striatal dopamine, which constitutes the bed of Parkinson's disease, but it did not cause cell death in any of brain regions examined. Teams from Zheijiang Univ. and Kiel Univ. hold that ochratoxin may contribute to Alzheimer's and to Parkinson's diseases. Nonetheless, their study was performed in vitro and may not extrapolate to humans.The developing brain is very susceptible to ochratoxin, hence the need for caution during pregnancy. Ochratoxin A can cause immunosuppression and immunotoxicity in animals. The toxin's immunosuppressant activity in animals may include depressed antibody responses, reduced size of immune organs (such as the thymus, spleen, and lymph nodes), changes in immune cell number and function, and altered cytokine production. Immunotoxicity probably results from cell death following apoptosis and necrosis, in combination with slow replacement of affected immune cells due to inhibition of protein synthesis. Balkan endemic nephropathy (BEN), a slowly progressive renal disease, appeared in the middle of the 20th century, highly localized around the Danube, but only hitting certain households. Patients over the years develop renal failure that requires dialysis or transplantation.The initial symptoms are those of a tubulointerstitial nephritis of the sort met with after toxic aggressions to the proximal convoluted tubules. Such proximal tubule nephropathies can be induced by aluminium (e.g. in antiperspirants), antibiotics (vancomycin, aminosides), tenofovir (for AIDS), and cisplatin. Their symptoms are well known to nephrologists: glycosuria without hyperglycemia, microalbuminuria, poor urine concentration capacity, impaired urine acidification, and yet long-lasting normal creatinine clearance. In BEN, renal biopsy shows acellular interstitial fibrosis, tubular atrophy, and karyomegaly in proximal convoluted tubules. A number of descriptive studies have suggested a correlation between exposure to ochratoxin A and BEN, and have found a correlation between its geographical distribution and a high incidence of, and mortality from, urothelial urinary tract tumours. However, insufficient information is currently available to conclusively link ochratoxin A to BEN. The toxin may require synergistic interactions with predisposing genotypes or other environmental toxicants to induce this nephropathy. Ochratoxin possibly is not the cause of this nephropathy, and many authors are in favor of aristolochic acid, that is contained in a plant: birthwort (Aristolochia clematitis). Nevertheless, although many of the pieces of scientific evidence are lacking and/or need serious re-evaluation, it remains that ochratoxin, in pigs, demonstrates direct correlation between exposure and onset and progression of nephropathy. This porcine nephropathy bears typical signs of toxicity to proximal tubules: loss of ability to concentrate urine, glycosuria, and histological proximal tubule degeneration. Other nephropathies, although not responding to the 'classical' definition of BEN, may be linked to ochratoxin. Thus, this could in certain circumstances be the case for focal segmental glomerulosclerosis after inhalational exposure: such a glomerulopathy with noteworthy proteinuria has been described in patients with very high urinary ochratoxin levels (around 10 times levels that can be met with in 'normal' subjects, i.e. around 10 ppb or 10 ng/ml). Ochratoxin-contaminated feed has its major economic impact on the poultry industry. Chickens, turkeys, and ducklings are susceptible to this toxin. Clinical signs of avian ochratoxicosis generally involve reduction in weight gains, poor feed conversion, reduced egg production, and poor egg shell quality. Economic losses occur also in swine farms, linked to nephropathy and costs for the disposal of carcasses. Toxicity does not seem to constitute a problem in cattle, as the rumen harbors protozoa that hydrolyze OTA. However, contamination of milk is a possibility.

[ "Mycotoxin", "Ochratoxin B", "Trichosporon mycotoxinivorans", "Balkan endemic nephropathy", "Penicillic acid", "Porcine nephropathy" ]
Parent Topic
Child Topic
    No Parent Topic