language-icon Old Web
English
Sign In

Camera lens

A camera lens (also known as photographic lens or photographic objective) is an optical lens or assembly of lenses used in conjunction with a camera body and mechanism to make images of objects either on photographic film or on other media capable of storing an image chemically or electronically.Principle of a pinhole camera. Light rays from an object pass through a small hole to form an image.With a large pinhole, the image spot is large, resulting in a blurry image.With a small pinhole light is reduced, but diffraction prevents the image spot from getting arbitrarily small.With a simple lens, much more light can be brought into sharp focus.28 mm lens50 mm lens70 mm lens210 mm lens A camera lens (also known as photographic lens or photographic objective) is an optical lens or assembly of lenses used in conjunction with a camera body and mechanism to make images of objects either on photographic film or on other media capable of storing an image chemically or electronically. There is no major difference in principle between a lens used for a still camera, a video camera, a telescope, a microscope, or other apparatus, but the detailed design and construction are different. A lens might be permanently fixed to a camera, or it might be interchangeable with lenses of different focal lengths, apertures, and other properties. While in principle a simple convex lens will suffice, in practice a compound lens made up of a number of optical lens elements is required to correct (as much as possible) the many optical aberrations that arise. Some aberrations will be present in any lens system. It is the job of the lens designer to balance these and produce a design that is suitable for photographic use and possibly mass production. Typical rectilinear lenses can be thought of as 'improved' pinhole 'lenses'. As shown, a pinhole 'lens' is simply a small aperture that blocks most rays of light, ideally selecting one ray to the object for each point on the image sensor. Pinhole lenses have a few severe limitations: Practical lenses can be thought of as an answer to the question: 'how can a pinhole lens be modified to admit more light and give a smaller spot size?'. A first step is to put a simple convex lens at the pinhole with a focal length equal to the distance to the film plane (assuming the camera will take pictures of distant objects). This allows the pinhole to be opened up significantly (fourth image) because a thin convex lens bends light rays in proportion to their distance to the axis of the lens, with rays striking the center of the lens passing straight through. The geometry is almost the same as with a simple pinhole lens, but rather than being illuminated by single rays of light, each image point is illuminated by a focused 'pencil' of light rays. From the front of the camera, the small hole (the aperture), would be seen. The virtual image of the aperture as seen from the world is known as the lens's entrance pupil; ideally, all rays of light leaving a point on the object that enter the entrance pupil will be focused to the same point on the image sensor/film (provided the object point is in the field of view). If one were inside the camera, one would see the lens acting as a projector. The virtual image of the aperture from inside the camera is the lens's exit pupil. In this simple case, the aperture, entrance pupil, and exit pupil are all in the same place because the only optical element is in the plane of the aperture, but in general these three will be in different places. Practical photographic lenses include more lens elements. The additional elements allow lens designers to reduce various aberrations, but the principle of operation remains the same: pencils of rays are collected at the entrance pupil and focused down from the exit pupil onto the image plane. A camera lens may be made from a number of elements: from one, as in the Box Brownie's meniscus lens, to over 20 in the more complex zooms. These elements may themselves comprise a group of lenses cemented together. The front element is critical to the performance of the whole assembly. In all modern lenses the surface is coated to reduce abrasion, flare, and surface reflectance, and to adjust color balance. To minimize aberration, the curvature is usually set so that the angle of incidence and the angle of refraction are equal. In a prime lens this is easy, but in a zoom there is always a compromise. The lens usually is focused by adjusting the distance from the lens assembly to the image plane, or by moving elements of the lens assembly. To improve performance, some lenses have a cam system that adjusts the distance between the groups as the lens is focused. Manufacturers call this different things: Nikon calls it CRC (close range correction); Canon calls it a floating system; and Hasselblad and Mamiya call it FLE (floating lens element).

[ "Computer vision", "Optics", "Artificial intelligence", "Utility model", "Lens (optics)", "Ophthalmic camera", "APS-C" ]
Parent Topic
Child Topic
    No Parent Topic