language-icon Old Web
English
Sign In

Mutation rate

In genetics, the mutation rate is the frequency of new mutations in a single gene or organism over time. Mutation rates are not constant and are not limited to a single type of mutation, therefore there are many different types of mutations. Mutation rates are given for specific classes of mutations. Point mutations are a class of mutations which are small or large scale insertions or deletions. There are also Missense and Nonsense mutations, which are variations of point mutations. The rate of these types of substitutions can be further subdivided into a mutation spectrum which describes the influence of the genetic context on the mutation rate. In genetics, the mutation rate is the frequency of new mutations in a single gene or organism over time. Mutation rates are not constant and are not limited to a single type of mutation, therefore there are many different types of mutations. Mutation rates are given for specific classes of mutations. Point mutations are a class of mutations which are small or large scale insertions or deletions. There are also Missense and Nonsense mutations, which are variations of point mutations. The rate of these types of substitutions can be further subdivided into a mutation spectrum which describes the influence of the genetic context on the mutation rate. There are several natural units of time for each of these rates, with rates being characterized either as mutations per base pair per cell division, per gene per generation, or per genome per generation. The mutation rate of an organism is an evolved characteristic and is strongly influenced by the genetics of each organism, in addition to strong influence from the environment. The upper and lower limits to which mutation rates can evolve is the subject of ongoing investigation. However, the mutation rate does vary over the genome. Over DNA, RNA or a single gene, mutation rates are changing. When the mutation rate in humans increases certain health risks can occur, for example, cancer and other hereditary diseases. Having knowledge of mutation rates is vital to understanding the future of cancers and many hereditary diseases. Different genetic variants within a species are referred to as alleles, therefore a new mutation can create a new allele. In Population genetics, each allele is characterized by a selection coefficient, which measures the expected change in an allele's frequency over time. The selection coefficient can either be negative, corresponding to an expected decrease, positive, corresponding to an expected increase, or zero, corresponding to no expected change. The distribution of fitness effects of new mutations is an important parameter in population genetics and has been the subject of extensive investigation. Although measurements of this distribution have been inconsistent in the past, it is now generally thought that the majority of mutations are mildly deleterious, that many have little effect on an organism's fitness, and that a few can be favorable. Because of natural selection, unfavorable mutations will typically be eliminated from a population while favorable changes are generally kept for the next generation, and neutral changes accumulate at the rate they are created by mutations. This process happens by reproduction. In a particular generation the 'best fit' survive with higher probability, passing their genes to their offspring. The sign of the change in this probability defines mutations to be beneficial, neutral or harmful to organisms.

[ "Mutation", "Gene", "Population", "mutation bias", "Segregating site", "Stepwise mutation model", "P16 Gene Mutation", "Muller's morphs" ]
Parent Topic
Child Topic
    No Parent Topic