An epigenome consists of a record of the chemical changes to the DNA and histone proteins of an organism; these changes can be passed down to an organism's offspring via transgenerational epigenetic inheritance. Changes to the epigenome can result in changes to the structure of chromatin and changes to the function of the genome. An epigenome consists of a record of the chemical changes to the DNA and histone proteins of an organism; these changes can be passed down to an organism's offspring via transgenerational epigenetic inheritance. Changes to the epigenome can result in changes to the structure of chromatin and changes to the function of the genome. The epigenome is involved in regulating gene expression, development, tissue differentiation, and suppression of transposable elements. Unlike the underlying genome which is largely static within an individual, the epigenome can be dynamically altered by environmental conditions. Epigenetics is a currently active topic in cancer research. Human tumors undergo a major disruption of DNA methylation and histone modification patterns. The aberrant epigenetic landscape of the cancer cell is characterized by a global genomic hypomethylation, CpG island promoter hypermethylation of tumor suppressor genes, an altered histone code for critical genes and a global loss of monoacetylated and trimethylated histone H4. As a prelude to a potential Human Epigenome Project, the Human Epigenome Pilot Project aims to identify and catalogue Methylation Variable Positions (MVPs) in the human genome. Advances in sequencing technology now allow for assaying genome-wide epigenomic states by multiple molecular methodologies. Micro- and nanoscale devices have been constructed or proposed to investigate the epigenome. An international effort to assay reference epigenomes commenced in 2010 in the form of the International Human Epigenome Consortium (IHEC). IHEC members aim to generate at least 1,000 reference (baseline) human epigenomes from different types of normal and disease-related human cell types. One goal of the NIH Roadmap Epigenomics Project is to generate human reference epigenomes from normal, healthy individuals across a large variety of cell lines, primary cells and primary tissues. Data produced by the project, which can be browsed and downloaded from the Human Epigenome Atlas, fall into five types that assay different aspects of the epigenome and outcomes of epigenomic states (such as gene expression): Reference epigenomes for healthy individuals will enable the second goal of the Roadmap Epigenomics Project, which is to examine epigenomic differences that occur in disease states such as Alzheimer's disease.