language-icon Old Web
English
Sign In

Fungal protein

Mycoprotein is a form of single-cell protein, also known as fungal protein, that is defined in the Oxford English Dictionary as 'Protein derived from fungi, especially as produced for human consumption.' 'Myco' is from the Greek word for 'fungus'. Mycoprotein is a form of single-cell protein, also known as fungal protein, that is defined in the Oxford English Dictionary as 'Protein derived from fungi, especially as produced for human consumption.' 'Myco' is from the Greek word for 'fungus'. The only mycoprotein on sale in Europe and North America is called Quorn, created from Fusarium venenatum. In the 1960s F. venenatum was identified by the English company, Rank Hovis McDougall, as a potential protein source for humans. F. venenatum was one of more than 3,000 species of fungi screened during a three-year period for being cheap to reproduce, nutritious, and palatable. Concerns for pathogen-potential of the species on plants led to a twelve-year testing process. After this period F. venenatum was allowed to be sold on the English market and at the time was the most thoroughly tested food product on the European market. F. venenatum is the only source of mycoprotein that can produce a high percentage of protein biomass approved for market. The fungus is grown in vats using glucose syrup as its food. A fermentation vat is filled with the growth medium and then inoculated with the fungal spores. The F. venenatum culture respires aerobically, so for it to grow at an optimum rate, it is supplied with oxygen, and carbon dioxide is drawn from the vat. To make protein, nitrogen (in the form of ammonia) is added and vitamins and minerals are needed to support growth. The vat is kept at a constant temperature, also optimized for growth; the fungus can double its mass every five hours. When the desired amount of mycoprotein has been created, the growth medium is drawn off from a tap at the bottom of the fermenter. The mycoprotein is separated and purified. It is a pale yellow solid with a faint taste of mushrooms. Different flavors and tastes can be added to the mycoprotein to add variety. A reproducible mutation occurs after 1,000 to 1,200 hours of cultivation in F. venenatum that greatly reduces the hypha length in the organism, which is considered unfavorable for production. Under normal conditions, this mutant strain will rapidly displace the parent strain. Replacing ammonia with nitrate as the source of nitrogen, or supplementing ammonium cultures with peptone, prevents this mutant strain from overtaking the product, but will still develop. Alternatively, the appearance of the mutant can be delayed by varying selection pressures such as nutrient concentrations or pH levels. Some strains of F. venenatum produce a variety of mycotoxins, such as type A tichothecenes. Mycotoxin-producing genes such as isotrichodermin, isotricodermol, sambucinol, apo-trichothecen, culmorin, culmorone, and enniatin B can be found in cultures of F. venenatum. Specific strands that do not produce mycotoxins under optimal conditions can be selected to reduce the danger to human consumers. Testing at six-hour intervals can be done to monitor mycotoxin presence. There is continual testing for concerns of allergic reactions, which can range from abdominal pain, nausea, and vomiting to severe asthmatic reactions, especially when crossed with inhaled mold spores. Mycoprotein is able to provide greater satiety than traditional protein sources such as chicken, while also being rich in protein and low in caloric content. Replacing two servings of meat protein with mycoprotein can result in a daily deficit of 80 kilocalories (330 kJ), whilst also extending the period of satiation, which is promising for weight management programs. Mycoprotein is rich in fiber and protein content, but very low in fat, making it a desirable food source for consumers trying to limit fat intake while still participating in a high protein diet. F. venenatum's high fiber content also has potential in managing blood sugar levels. The mechanism that links fiber content and F. venenatum's effect on managing glycemia and insulenaemia is not completely understood, but it is known to decrease the rate of glucose absorption and insulin secretion and it helps mitigate the maximum limit an amount of insulin can process glucose, known as insulin peak.

[ "Gene", "Mutant", "Peptide sequence", "Mutation", "Saccharomyces cerevisiae", "Homotypic vacuole fusion", "pts receptors", "CBF3 complex", "SNF1 protein kinase", "Spore wall assembly" ]
Parent Topic
Child Topic
    No Parent Topic