language-icon Old Web
English
Sign In

FOXO1

3CO6, 3CO7, 3COA, 4LG0230856458ENSG00000150907ENSMUSG00000044167Q12778Q9R1E0NM_002015NM_019739NP_002006NP_062713Forkhead box protein O1 (FOXO1) also known as forkhead in rhabdomyosarcoma is a protein that in humans is encoded by the FOXO1 gene. FOXO1 is a transcription factor that plays important roles in regulation of gluconeogenesis and glycogenolysis by insulin signaling, and is also central to the decision for a preadipocyte to commit to adipogenesis. It is primarily regulated through phosphorylation on multiple residues; its transcriptional activity is dependent on its phosphorylation state. Forkhead box protein O1 (FOXO1) also known as forkhead in rhabdomyosarcoma is a protein that in humans is encoded by the FOXO1 gene. FOXO1 is a transcription factor that plays important roles in regulation of gluconeogenesis and glycogenolysis by insulin signaling, and is also central to the decision for a preadipocyte to commit to adipogenesis. It is primarily regulated through phosphorylation on multiple residues; its transcriptional activity is dependent on its phosphorylation state. FOXO1 negatively regulates adipogenesis. Presently, the exact mechanism by which this is accomplished is not entirely understood. In the currently accepted model, FOXO1 negatively regulates adipogenesis by binding to the promoter sites of PPARG and preventing its transcription. Rising levels of PPARG are required to initiate adipogenesis; by preventing its transcription, FOXO1 is preventing the onset of adipogenesis. During stimulation by insulin, FOXO1 is excluded from the nucleus and is subsequently unable to prevent transcription of PPARG and inhibit adipogenesis. However, there is substantial evidence to suggest that there are other factors that mediate the interaction between FOXO1 and the PPARG promoter, and that inhibition of adipogenesis is not entirely dependent on FOXO1 preventing transcription of PPARG. The failure to commit to adipogenesis is primarily due to active FOXO1 arresting the cell in G0/G1 through activation of yet unknown downstream targets, with a putative target being SOD2. FOXO1 belongs to the forkhead family of transcription factors that are characterized by a distinct fork head domain. The specific function of this gene has not yet been determined; however, it may play a role in myogenic growth and differentiation. FOXO1 is essential for the maintenance of human ESC pluripotency. This function is probably mediated through direct control by FOXO1 of OCT4 and SOX2 gene expression through occupation and activation of their respective promoters. In hepatic cells this transcription factor seems to increase the expression of PEPCK and glycogen-6-phosphatase (the same enzymes that are blocked via the metformin/AMPK/SHP pathway). Blocking this transcription factor offers an opportunity for novel therapies for diabetes mellitus. In pancreatic alpha-cells FOXO1 is important in regulating prepro-glucagon expression. In pancreatic beta cells FOXO1 mediates glucagon-like peptide-1 effects on pancreatic beta-cell mass. When the level of blood glucose is high, the pancreas releases insulin into the bloodstream. Insulin then causes the activation of PI3K, which subsequently phosphorylates Akt. Akt then phosphorylates FOXO1, causing nuclear exclusion. This phosphorylated FOXO1 is then ubiquitinated and degraded by the proteosome. The phosphorylation of FOXO1 is irreversible; this prolongs insulin's inhibitory effect on glucose metabolism and hepatic glucose production. Transcription of glucose 6-phosphatase subsequently decreases, which consequently decreases the rates of gluconeogenesis and glycogenolysis. FOXO1 also activates transcription of phosphoenolpyruvate carboxykinase, which is required for gluconeogenesis. The activity of FOXO1 is also regulated through CBP induced acetylation on Lys-242, Lys-245, and Lys-262. These lysine residues are located within the DNA-binding domain; acetylation inhibits the ability of FOXO1 to interact with the glucose-6 phosphatase promoter by decreasing the stability of the FOXO1-DNA complex. Additionally, this acetylation increases the rate of phosphorylation on Ser-253 by Akt. Mutating Ser-253 to Ala-253 makes FOXO1 constitutively active. SIRT1 reverses this acetylation process; however, the exact mechanism by which SIRT1 deacetylates FOXO1 is still under investigation; presently, acetylation is thought to mitigate the transcriptional activity of FOXO1 and thereby provide an additional level of metabolic regulation that is independent of the insulin/PI3K pathway. FOXO1 may play an important role in apoptosis because it is phosphorylated and inhibited by AKT. When FOXO1 over expressed in human LNCaP prostate cancer cells, it caused apoptosis in these cancer cells. Also, It is detected that FOXO1 regulateTNF-related apoptosis-inducing ligand (TRAIL), which cause FOXO1-induced apoptosis in the human prostate cancer cell line LAPC4 when FOXO1 adenovirus-mediated overexpression was used. FOXO1 upregulate Fas ligand (FasL) transcriptionally that result in promotes apoptotic cell death. Additionally, FOXO1 trans-activate Bim protein, which a member of the Bcl-2 family that promotes apoptosis and plays a role in the intrinsic mitochondrial apoptotic pathway. Further, it was revealed that DNA damage-induced cell death in p53-deficient and p53-proficient cells reduced when human FOXO1 silenced by siRNA. FOXO1 activation plays a role in cell cycle progression regulation. The transcription and half- life of cyclin-dependent kinase inhibitor p27KIP1 rises when FOXO1 is active. A study detects that FOXO1 regulates the nuclear localization of p27KIP1 in porcine granulosa cells and impacts cell cycle progression. Furthermore, FOXO1-mediated cell cycle arrest is linked with cyclin D1 and cyclin D2 suppression in mammals. It was detected that human FOXO1 is linked with the cyclin D1 promoter using chromatin immunoprecipitation assays (ChIP assays). H215R is a human FOXO1 mutant, which cannot bind to the canonical FRE to induce expression of p27KIP1, repress cyclin D1 and cyclin D2 promoter activity and encourages cell cycle arrest at cyclin G1 (CCNG1). As a result of that, activation of FOXO1 prevents the cell-division cycle at cyclin G1 (CCNG1) out of one of two ways stimulating or suppressing gene transcription. In its un-phosphorylated state, FOXO1 is localized to the nucleus, where it binds to the insulin response sequence located in the promoter for glucose 6-phosphatase and increases its rate of transcription. FOXO1, through increasing transcription of glucose-6-phosphatase, indirectly increases the rate of hepatic glucose production. However, when FOXO1 is phosphorylated by Akt on Thr-24, Ser-256, and Ser-319, it is excluded from the nucleus, where it is then ubiquitinated and degraded. The phosphorylation of FOXO1 by Akt subsequently decreases the hepatic glucose production through a decrease in transcription of glucose 6-phosphatase. There are three processes, namely acetylation, phosphorylation, and ubiquitination that are responsible for regulation of the activity of forkhead box O1 (FOXO1). Phosphorylation of the FOXO1 protein is a result of the activation of the PI3K /AKT pathway. Serum and glucocorticoid-inducible kinase SGK can also phosphorylate and inactivate FOXO1 transcription factor. FOXO1 translocate from the nucleus to cytoplasm and inactivate through phosphorylation at well-defined sites by AKT/SGK1 protein kinases. FOXO1 transcription factor can phosphorylate directly by AKT/SGK1 on three sites T24, S256 and S319. Additionally, FOXO1 loses its interactions with DNA when phosphorylated by AKT/SGK1 because S256, which is one of the three AKT/SGK sites, changes the DNA-binding domain charge from a positive charge to a negative charge.

[ "Protein kinase B", "Transcription factor", "Forkhead box O4", "FOXO4", "FOXO Family", "Forkhead Box Protein O3", "pax3 fkhr" ]
Parent Topic
Child Topic
    No Parent Topic