language-icon Old Web
Sign In

Terahertz radiation

Terahertz radiation – also known as submillimeter radiation, terahertz waves, tremendously high frequency (THF), T-rays, T-waves, T-light, T-lux or THz – consists of electromagnetic waves within the ITU-designated band of frequencies from 0.1 to 30 terahertz (THz). One terahertz is 1012 Hz or 1000 GHz. Wavelengths of radiation in the terahertz band correspondingly range from 1 mm to 0.1 mm (or 100 μm). Because terahertz radiation begins at a wavelength of one millimeter and proceeds into shorter wavelengths, it is sometimes known as the submillimeter band, and its radiation as submillimeter waves, especially in astronomy. Terahertz radiation can penetrate thin layers of materials but is blocked by thicker objects. THz beams transmitted through materials can be used for material characterization, layer inspection, and as an alternative to X-rays for producing high resolution images of the interior of solid objects. Terahertz radiation occupies a middle ground between microwaves and infrared light waves known as the “terahertz gap”, where technology for its generation and manipulation is in its infancy. It represents the region in the electromagnetic spectrum where the frequency of electromagnetic radiation becomes too high to be measured digitally via electronic counters, so must be measured by proxy using the properties of wavelength and energy. Similarly, the generation and modulation of coherent electromagnetic signals in this frequency range ceases to be possible by the conventional electronic devices used to generate radio waves and microwaves, requiring the development of new devices and techniques. Terahertz radiation falls in between infrared radiation and microwave radiation in the electromagnetic spectrum, and it shares some properties with each of these. Like infrared and microwave radiation, terahertz radiation travels in a line of sight and is non-ionizing. Like microwave radiation, terahertz radiation can penetrate a wide variety of non-conducting materials. Terahertz radiation can pass through clothing, paper, cardboard, wood, masonry, plastic and ceramics. The penetration depth is typically less than that of microwave radiation. Terahertz radiation has limited penetration through fog and clouds and cannot penetrate liquid water or metal. Terahertz radiation is not ionizing yet can penetrate some distance through body tissue, so it is of interest as a replacement for medical X-rays. Due to its longer wavelength, images made using terahertz waves have lower resolution than X-rays and need to be enhanced (see figure at right). The earth's atmosphere is a strong absorber of terahertz radiation, so the range of terahertz radiation in air is limited to tens of meters, making it unsuitable for long-distance communications. However, at distances of ~10 meters the band may still allow many useful applications in imaging and construction of high bandwidth wireless networking systems, especially indoor systems. In addition, producing and detecting coherent terahertz radiation remains technically challenging, though inexpensive commercial sources now exist in the 0.3–1.0 THz range (the lower part of the spectrum), including gyrotrons, backward wave oscillators, and resonant-tunneling diodes. The terahertz band, covering the wavelength range between 0.1–1 mm, is identical to the submillimeter wavelength band. However, typically, the term 'terahertz' is used more often in marketing in relation to generation and detection with pulsed lasers, as in terahertz time domain spectroscopy, while the term 'submillimeter' is used for generation and detection with microwave technology, such as harmonic multiplication. Terahertz radiation is emitted as part of the black-body radiation from anything with a temperature greater than about 2 Kelvin. While this thermal emission is very weak, observations at these frequencies are important for characterizing cold 10–20 K cosmic dust in interstellar clouds in the Milky Way galaxy, and in distant starburst galaxies. Telescopes operating in this band include the James Clerk Maxwell Telescope, the Caltech Submillimeter Observatory and the Submillimeter Array at the Mauna Kea Observatory in Hawaii, the BLAST balloon borne telescope, the Herschel Space Observatory, the Heinrich Hertz Submillimeter Telescope at the Mount Graham International Observatory in Arizona, and at the recently built Atacama Large Millimeter Array. The opacity of the Earth's atmosphere to submillimeter radiation restricts these observatories to very high altitude sites, or to space.

[ "Electronic engineering", "Optoelectronics", "Optics", "Quantum mechanics", "terahertz antenna", "Terahertz nondestructive evaluation", "phonon polariton", "Goubau line", "photoconductive antenna" ]
Parent Topic
Child Topic
    No Parent Topic