language-icon Old Web
English
Sign In

Biological network

A biological network is any network that applies to biological systems. A network is any system with sub-units that are linked into a whole, such as species units linked into a whole food web. Biological networks provide a mathematical representation of connections found in ecological, evolutionary, and physiological studies, such as neural networks. The analysis of biological networks with respect to human diseases has led to the field of network medicine. A biological network is any network that applies to biological systems. A network is any system with sub-units that are linked into a whole, such as species units linked into a whole food web. Biological networks provide a mathematical representation of connections found in ecological, evolutionary, and physiological studies, such as neural networks. The analysis of biological networks with respect to human diseases has led to the field of network medicine. Complex biological systems may be represented and analyzed as computable networks. For example, ecosystems can be modeled as networks of interacting species or a protein can be modeled as a network of amino acids. Breaking a protein down farther, amino acids can be represented as a network of connected atoms, such as carbon, nitrogen, and oxygen. Nodes and edges are the basic components of a network. Nodes represent units in the network, while edges represent the interactions between the units. Nodes can represent a wide-array of biological units, from individual organisms to individual neurons in the brain. Two important properties of a network are degree and betweenness centrality. Degree (or connectivity, a distinct usage from that used in graph theory) is the number of edges that connect a node, while betweenness is a measure of how central a node is in a network. Nodes with high betweenness essentially serve as bridges between different portions of the network (i.e. interactions must pass through this node to reach other portions of the network). In social networks, nodes with high degree or high betweenness may play important roles in the overall composition of a network. As early as the 1980s, researchers started viewing DNA or genomes as the dynamic storage of a language system with precise computable finite states represented as a finite state machine. Recent complex systems research has also suggested some far-reaching commonality in the organization of information in problems from biology, computer science, and physics, such as the Bose–Einstein condensate (a special state of matter). Bioinformatics has increasingly shifted its focus from individual genes, proteins, and search algorithms to large-scale networks often denoted as -omes such as biome, interactome, genome and proteome. Such theoretical studies have revealed that biological networks share many features with other networks such as the Internet or social networks, e.g. their network topology. Many protein–protein interactions (PPIs) in a cell form protein interaction networks (PINs) where proteins are nodes and their interactions are edges. PINs are the most intensely analyzed networks in biology. There are dozens of PPI detection methods to identify such interactions. The yeast two-hybrid system is a commonly used experimental technique for the study of binary interactions. Recent studies have indicated conservation of molecular networks through deep evolutionary time. Moreover, it has been discovered that proteins with high degrees of connectedness are more likely to be essential for survival than proteins with lesser degrees. This suggests that the overall composition of the network (not simply interactions between protein pairs) is important for the overall functioning of an organism. The activity of genes is regulated by transcription factors, proteins that typically bind to DNA. Most transcription factors bind to multiple binding sites in a genome. As a result, all cells have complex gene regulatory networks. For instance, the human genome encodes on the order of 1,400 DNA-binding transcription factors that regulate the expression of more than 20,000 human genes. Technologies to study gene regulatory networks include ChIP-chip, ChIP-seq, CliP-seq, and others. Gene co-expression networks can be interpreted as association networks between variables that measure transcript abundances. These networks have been used to provide a systems biologic analysis of DNA microarray data, RNA-seq data, miRNA data etc.weighted gene co-expression network analysis is widely used to identify co-expression modules and intramodular hub genes. Co-expression modules may correspond to cell types or pathways. Highly connected intramodular hubs can be interpreted as representatives of their respective module. The chemical compounds of a living cell are connected by biochemical reactions which convert one compound into another. The reactions are catalyzed by enzymes. Thus, all compounds in a cell are parts of an intricate biochemical network of reactions which is called metabolic network. It is possible to use network analyses to infer how selection acts on metabolic pathways.

[ "Bioinformatics", "Gene", "Machine learning", "Artificial intelligence", "Computational biology", "Network motif", "network alignment" ]
Parent Topic
Child Topic
    No Parent Topic