language-icon Old Web
English
Sign In

Boosting (machine learning)

Boosting is a machine learning ensemble meta-algorithm for primarily reducing bias, and also variance in supervised learning, and a family of machine learning algorithms that convert weak learners to strong ones. Boosting is based on the question posed by Kearns and Valiant (1988, 1989): 'Can a set of weak learners create a single strong learner?' A weak learner is defined to be a classifier that is only slightly correlated with the true classification (it can label examples better than random guessing). In contrast, a strong learner is a classifier that is arbitrarily well-correlated with the true classification. Boosting is a machine learning ensemble meta-algorithm for primarily reducing bias, and also variance in supervised learning, and a family of machine learning algorithms that convert weak learners to strong ones. Boosting is based on the question posed by Kearns and Valiant (1988, 1989): 'Can a set of weak learners create a single strong learner?' A weak learner is defined to be a classifier that is only slightly correlated with the true classification (it can label examples better than random guessing). In contrast, a strong learner is a classifier that is arbitrarily well-correlated with the true classification. Robert Schapire's affirmative answer in a 1990 paper to the question of Kearns and Valiant has had significant ramifications in machine learning and statistics, most notably leading to the development of boosting. When first introduced, the hypothesis boosting problem simply referred to the process of turning a weak learner into a strong learner. 'Informally, problem asks whether an efficient learning algorithm that outputs a hypothesis whose performance is only slightly better than random guessing implies the existence of an efficient algorithm that outputs a hypothesis of arbitrary accuracy .' Algorithms that achieve hypothesis boosting quickly became simply known as 'boosting'. Freund and Schapire's arcing (Adaptive Resampling and Combining), as a general technique, is more or less synonymous with boosting. While boosting is not algorithmically constrained, most boosting algorithms consist of iteratively learning weak classifiers with respect to a distribution and adding them to a final strong classifier. When they are added, they are typically weighted in some way that is usually related to the weak learners' accuracy. After a weak learner is added, the data weights are readjusted, known as 're-weighting'. Misclassified input data gain a higher weight and examples that are classified correctly lose weight. Thus, future weak learners focus more on the examples that previous weak learners misclassified. There are many boosting algorithms. The original ones, proposed by Robert Schapire (a recursive majority gate formulation) and Yoav Freund (boost by majority), were not adaptive and could not take full advantage of the weak learners. Schapire and Freund then developed AdaBoost, an adaptive boosting algorithm that won the prestigious Gödel Prize. Only algorithms that are provable boosting algorithms in the probably approximately correct learning formulation can accurately be called boosting algorithms. Other algorithms that are similar in spirit to boosting algorithms are sometimes called 'leveraging algorithms', although they are also sometimes incorrectly called boosting algorithms. The main variation between many boosting algorithms is their method of weighting training data points and hypotheses. AdaBoost is very popular and the most significant historically as it was the first algorithm that could adapt to the weak learners. It is often the basis of introductory coverage of boosting in university machine learning courses. There are many more recent algorithms such as LPBoost, TotalBoost, BrownBoost, xgboost, MadaBoost, LogitBoost, and others. Many boosting algorithms fit into the AnyBoost framework, which shows that boosting performs gradient descent in a function space using a convex cost function. Given images containing various known objects in the world, a classifier can be learned from them to automatically categorize the objects in future images. Simple classifiers built based on some image feature of the object tend to be weak in categorization performance. Using boosting methods for object categorization is a way to unify the weak classifiers in a special way to boost the overall ability of categorization. Object categorization is a typical task of computer vision that involves determining whether or not an image contains some specific category of object. The idea is closely related with recognition, identification, and detection. Appearance based object categorization typically contains feature extraction, learning a classifier, and applying the classifier to new examples. There are many ways to represent a category of objects, e.g. from shape analysis, bag of words models, or local descriptors such as SIFT, etc. Examples of supervised classifiers are Naive Bayes classifiers, support vector machines, mixtures of Gaussians, and neural networks. However, research has shown that object categories and their locations in images can be discovered in an unsupervised manner as well.

[ "Machine learning", "Artificial intelligence", "Pattern recognition", "LogitBoost", "Gradient boosting", "Boosting methods for object categorization" ]
Parent Topic
Child Topic
    No Parent Topic