language-icon Old Web
English
Sign In

Effects of global warming on oceans

Effects of global warming on oceans provides information on the various effects that global warming has on oceans. Global warming can affect sea levels, coastlines, ocean acidification, ocean currents, seawater, sea surface temperatures, tides, the sea floor, weather, and trigger several changes in ocean bio-geochemistry; all of these affect the functioning of a society.There are a number of factors affecting rising sea levels, including the thermal expansion of seawater, the melting of glaciers and ice sheets on land, and possibly human changes to groundwater storage.The currents in the world's oceans are a result of varying temperatures associated with the changing latitudes of our planet. As the atmosphere is warmed nearest the equator, the hot air at the surface of our planet is heated, causing it to rise and draw in cooler air to take its place, creating what is known as circulation cells. This ultimately causes the air to be significantly colder near the poles than at the equator.Another effect of global warming on the carbon cycle is ocean acidification. The ocean and the atmosphere constantly act to maintain a state of equilibrium, so a rise in atmospheric carbon naturally leads to a rise in oceanic carbon. When carbon dioxide is dissolved in water it forms hydrogen and bicarbonate ions, which in turn breaks down to hydrogen and carbonate ions. All these extra hydrogen ions increase the acidity of the ocean and make survival harder for planktonic organisms that depend on calcium carbonate to form their shells. A decrease in the base of the food chain will, once again, be destructive to the ecosystems to which they belong. With fewer of these photosynthetic organisms present at the surface of the ocean, less carbon dioxide will be converted to oxygen, thereby allowing the greenhouse gasses to go unchecked.Ocean deoxygenation is projected to increase hypoxia by 10%, and triple suboxic waters (oxygen concentrations 98% less than the mean surface concentrations), for each 1 °C of upper ocean warming.Research indicates that increasing ocean temperatures are taking a toll on the marine ecosystem. A study on phytoplankton changes in the Indian Ocean indicates a decline of up to 20% in marine phytoplankton during the past six decades. During the summer, the western Indian Ocean is home to one of the largest concentrations of marine phytoplankton blooms in the world when compared to other oceans in the tropics. Increased warming in the Indian Ocean enhances ocean stratification, which prevents nutrient mixing in the euphotic zone where there is ample light available for photosynthesis. Thus, primary production is constrained and the region's entire food web is disrupted. If rapid warming continues, experts predict that the Indian Ocean will transform into an ecological desert and will no longer be productive. The same study also addresses the abrupt decline of tuna catch rates in the Indian Ocean during the past half century. This decrease is mostly due to increased industrial fisheries, with ocean warming adding further stress to the fish species. These rates show a 50-90% decrease over 5 decades.Global warming also affects weather patterns as they pertain to cyclones. Scientists have found that although there have been fewer cyclones than in the past, the intensity of each cyclone has increased. A simplified definition of what global warming means for the planet is that colder regions would get warmer and warmer regions would get much warmer. However, there is also speculation that the complete opposite could be true. A warmer earth could serve to moderate temperatures worldwide. There is still much that is not understood about the earth's climate, because it is very difficult to make climate models. As such, predicting the effects that global warming might have on our planet is still an inexact science. Global warming is also causing the amount of hazards on the ocean to increase. It has increased the amount of fog at sea level, making it harder for ships to navigate without crashing into other boats or other objects in the ocean. The warmness and dampness of the ground is causing the fog to come closer to the surface level of the ocean. As the rain falls it makes the ground wet, then the warm air rises leaving a layer of cold air that turns into fog causing an unsafe ocean for travel and for working conditions on the ocean. It is also causing the ocean to create more floods due to the fact that it is warming up and the glaciers from the ice age are now melting causing the sea levels to rise, which causes the ocean to take over part of the land and beaches. Glaciers are melting at an alarming rate which is causing the ocean to rise faster than predicted. Inside of this ice there are traces of bubbles that are filled with CO2 that are then released into the atmosphere when they melt causing the greenhouse effect to grow at an even faster rate.It is known that climate affects the ocean and the ocean affects the climate. Due to climate change, as the ocean gets warmer this too has an effect on the seafloor. Because of greenhouse gases such as carbon dioxide, this warming will have an effect on the bicarbonate buffer of the ocean. The bicarbonate buffer is the concentration of bicarbonate ions that keeps the ocean's acidity balanced within a pH range of 7.5–8.4. Addition of carbon dioxide to the ocean water makes the oceans more acidic. Increased ocean acidity is not good for the planktonic organisms that depend on calcium to form their shells. Calcium dissolves with very weak acids and any increase in the ocean's acidity will be destructive for the calcareous organisms. Increased ocean acidity will lead to decreased Calcite Compensation Depth (CCD), causing calcite to dissolve in shallower waters. This will then have a great effect on the calcareous ooze in the ocean, because the sediment itself would begin to dissolve.If ocean temperatures rise it will have an effect right beneath the ocean floor and it will allow the addition of another greenhouse gas, methane gas. Methane gas has been found under methane hydrate, frozen methane and water, beneath the ocean floor. With the ocean warming, this methane hydrate will begin to melt and release methane gas, contributing to global warming. However, recent research has found that CO2 uptake outpaces methane release in these areas of the ocean causing overall decreases in global warming. Increase of water temperature will also have a devastating effect on different oceanic ecosystems like coral reefs. The direct effect is the coral bleaching of these reefs, which live within a narrow temperature margin, so a small increase in temperature would have a drastic effects in these environments. When corals bleach it is because the coral loses 60–90% of their zooxanthellae due to various stressors, ocean temperature being one of them. If the bleaching is prolonged, the coral host would die.

[ "Global warming" ]
Parent Topic
Child Topic
    No Parent Topic