Dentatorubral-pallidoluysian atrophy

Dentatorubral–pallidoluysian atrophy (DRPLA) is an autosomal dominant spinocerebellar degeneration caused by an expansion of a CAG repeat encoding a polyglutamine tract in the atrophin-1 protein. It is also known as Haw River Syndrome and Naito–Oyanagi disease. Although this condition was perhaps first described by Smith et al. in 1958, and several sporadic cases have been reported from Western countries, this disorder seems to be very rare except in Japan. Dentatorubral–pallidoluysian atrophy (DRPLA) is an autosomal dominant spinocerebellar degeneration caused by an expansion of a CAG repeat encoding a polyglutamine tract in the atrophin-1 protein. It is also known as Haw River Syndrome and Naito–Oyanagi disease. Although this condition was perhaps first described by Smith et al. in 1958, and several sporadic cases have been reported from Western countries, this disorder seems to be very rare except in Japan. There are at least eight neurodegenerative diseases that are caused by expanded CAG repeats encoding polyglutamine (polyQ) stretches (see: Trinucleotide repeat disorder). The expanded CAG repeats create an adverse gain-of-function mutation in the gene products. Of these diseases, DRPLA is most similar to Huntington's disease. DRPLA can be juvenile-onset (<20 years), early adult-onset (20–40 years), or late adult-onset (>40 years). Late adult-onset DRPLA is characterized by ataxia, choreoathetosis and dementia. Early adult-onset DRPLA also includes seizures and myoclonus. Juvenile-onset DRPLA presents with ataxia and symptoms consistent with progressive myoclonus epilepsy (myoclonus, multiple seizure types and dementia). Other symptoms that have been described include cervical dystonia, corneal endothelial degeneration autism, and surgery-resistant obstructive sleep apnea. The human genome contains two atrophin genes; DRPLA has been correlated to the expansion of the polyglutamine region of the atrophin-1 gene on chromosome 12p13.3. A normal number of CAG repeats in the atrophin-1 gene is 7–34, affected individuals display 49–93 repeats. DRPLA displays anticipation, an inverse correlation between the size of the expanded CAG repeat and the age of symptom onset. Paternal transmission results in more prominent anticipation (26–29 years) than maternal transmission (14–15 years). Atrophin-1 (ATN1) encodes a hydrophilic 1184 amino acid protein with several repetitive motifs including a serine-rich region, a variable length polyglutamine tract, a polyproline tract, and a region of alternating acidic and basic residues. It contains a putative nuclear localization signal in the N-terminus of the protein and a putative nuclear export signal in the C-terminus. ATN1 is ubiquitously expressed in all tissues, but proteolytically cleaved in neuronal cells. The function of ATN1 is not clear, however it is believed to be a transcriptional co-repressor. ATN1 and atrophin-2 can be co-immunoprecipitated, indicating that they may carry out some functions together in a molecular complex. Atrophin-1 may be a dispensable or redundant protein as mice bred with a null allele for atrophin-1 produce viable and fertile offspring and show no compensatory upregulation of atrophin-2. Mouse models of DRPLA have been successfully generated, which demonstrate the same intergenerational instability and severe phenotype as human DRPLA. The Schilling mice express full-length human atrophin-1 with 65 CAG repeats under transcriptional control of the mouse prion protein promoter. The mice demonstrated progressive ataxia, tremors, abnormal movements, seizures and premature death. Like in human brains, nuclear accumulation was demonstrated and occasional NIIs were visualised, but the NIIs did not stain for ubiquitin and no neuronal loss was seen. The Sato mice harbored a single copy of full-length human atrophin-1 with 76 or 129 CAG repeats. The hemizygous transgenic offspring of the Q129 mice exhibited symptoms similar to juvenile-type DRPLA, such as myoclonus and seizures. Again, neuronal atrophy was noted, but no neuronal loss (until death). Diffuse accumulation in the nuclei began on post-natal day 4 and ubiquitinated NII formation was detectable at 9 weeks of age. No PML bodies were found to be associated with the NIIs, which were morphologically mildly altered from those seen in human neural cells. DRPLA is characterized by marked, generalized brain atrophy and the accumulation of atrophin-1 with expanded glutamine stretches. Mutant atrophin-1 proteins have been found in neuronal intranuclear inclusions (NII) and diffusely accumulated in the neuronal nuclei. While the role of NIIs (pathologic or protective) is unclear, the diffuse accumulation of mutant protein is regarded as toxic. There is significant reduction in CNS tissue throughout the brain and spinal cord, with brain weights of DRPLA patients often becoming less than 1000g. In regions lacking obvious neuronal depletion, atrophy of the neuropil is noted. The globus pallidus (lateral greater than medial segment) and subthalamic nucleus demonstrate consistent neuronal loss and astrocytic gliosis. The dentate nucleus shows neuronal loss with the remaining atrophic neurons exhibiting grumose degeneration. In general, the pallidoluysian degeneration is more severe than the dentatorubral degeneration in juvenile-onset and the reverse is true for the late adult-onset. Transgenic DRPLA mice demonstrated several neuronal abnormalities including a reduction in the number and size of dendritic spines as well as in the area of perikarya and diameter of dendrites. Spine morphology and density have been linked to learning and memory functions as well as epilepsy. The stubby-type spines seen in DRPLA mice are morphologically different from the thin and mushroom-type spines seen in Huntington’s mice.

[ "Dominance (genetics)", "Trinucleotide repeat expansion", "Central nervous system disease", "Atrophy", "Degenerative disease" ]
Parent Topic
Child Topic
    No Parent Topic