language-icon Old Web
English
Sign In

Particle physics

Particle physics (also known as high energy physics) is a branch of physics that studies the nature of the particles that constitute matter and radiation. Although the word particle can refer to various types of very small objects (e.g. protons, gas particles, or even household dust), particle physics usually investigates the irreducibly smallest detectable particles and the fundamental interactions necessary to explain their behaviour. By our current understanding, these elementary particles are excitations of the quantum fields that also govern their interactions. The currently dominant theory explaining these fundamental particles and fields, along with their dynamics, is called the Standard Model. Thus, modern particle physics generally investigates the Standard Model and its various possible extensions, e.g. to the newest 'known' particle, the Higgs boson, or even to the oldest known force field, gravity. Modern particle physics research is focused on subatomic particles, including atomic constituents such as electrons, protons, and neutrons (protons and neutrons are composite particles called baryons, made of quarks), produced by radioactive and scattering processes, such as photons, neutrinos, and muons, as well as a wide range of exotic particles.Dynamics of particles is also governed by quantum mechanics; they exhibit wave–particle duality, displaying particle-like behaviour under certain experimental conditions and wave-like behaviour in others. In more technical terms, they are described by quantum state vectors in a Hilbert space, which is also treated in quantum field theory. Following the convention of particle physicists, the term elementary particles is applied to those particles that are, according to current understanding, presumed to be indivisible and not composed of other particles. All particles and their interactions observed to date can be described almost entirely by a quantum field theory called the Standard Model. The Standard Model, as currently formulated, has 61 elementary particles.Those elementary particles can combine to form composite particles, accounting for the hundreds of other species of particles that have been discovered since the 1960s. The Standard Model has been found to agree with almost all the experimental tests conducted to date. However, most particle physicists believe that it is an incomplete description of nature and that a more fundamental theory awaits discovery (See Theory of Everything). In recent years, measurements of neutrino mass have provided the first experimental deviations from the Standard Model. The idea that all matter is fundamentally composed of elementary particles dates from at least the 6th century BC. In the 19th century, John Dalton, through his work on stoichiometry, concluded that each element of nature was composed of a single, unique type of particle. The word atom, after the Greek word atomos meaning 'indivisible', has since then denoted the smallest particle of a chemical element, but physicists soon discovered that atoms are not, in fact, the fundamental particles of nature, but are conglomerates of even smaller particles, such as the electron. The early 20th century explorations of nuclear physics and quantum physics led to proofs of nuclear fission in 1939 by Lise Meitner (based on experiments by Otto Hahn), and nuclear fusion by Hans Bethe in that same year; both discoveries also led to the development of nuclear weapons. Throughout the 1950s and 1960s, a bewildering variety of particles were found in collisions of particles from increasingly high-energy beams. It was referred to informally as the 'particle zoo'. That term was deprecated after the formulation of the Standard Model during the 1970s, in which the large number of particles was explained as combinations of a (relatively) small number of more fundamental particles. The current state of the classification of all elementary particles is explained by the Standard Model, gaining widespread acceptance in the mid-1970s after experimental confirmation of the existence of quarks. It describes the strong, weak, and electromagnetic fundamental interactions, using mediating gauge bosons. The species of gauge bosons are eight gluons, W−, W+ and Z bosons, and the photon. The Standard Model also contains 24 fundamental fermions (12 particles and their associated anti-particles), which are the constituents of all matter. Finally, the Standard Model also predicted the existence of a type of boson known as the Higgs boson. Early in the morning on 4 July 2012, physicists with the Large Hadron Collider at CERN announced they had found a new particle that behaves similarly to what is expected from the Higgs boson.

[ "Physics", "exchange model", "Anomalous electric dipole moment", "Hadron epoch", "Minicharged particle", "effective lagrangian" ]
Parent Topic
Child Topic
    No Parent Topic