language-icon Old Web
English
Sign In

Nitric oxide synthase

Nitric oxide synthases (EC 1.14.13.39) (NOSs) are a family of enzymes catalyzing the production of nitric oxide (NO) from L-arginine. NO is an important cellular signaling molecule. It helps modulate vascular tone, insulin secretion, airway tone, and peristalsis, and is involved in angiogenesis and neural development. It may function as a retrograde neurotransmitter. Nitric oxide is mediated in mammals by the calcium-calmodulin controlled isoenzymes eNOS (endothelial NOS) and nNOS (neuronal NOS). The inducible isoform, iNOS, involved in immune response, binds calmodulin at physiologically relevant concentrations, and produces NO as an immune defense mechanism, as NO is a free radical with an unpaired electron. It is the proximate cause of septic shock and may function in autoimmune disease.Calcium insensitive Nitric oxide synthases (EC 1.14.13.39) (NOSs) are a family of enzymes catalyzing the production of nitric oxide (NO) from L-arginine. NO is an important cellular signaling molecule. It helps modulate vascular tone, insulin secretion, airway tone, and peristalsis, and is involved in angiogenesis and neural development. It may function as a retrograde neurotransmitter. Nitric oxide is mediated in mammals by the calcium-calmodulin controlled isoenzymes eNOS (endothelial NOS) and nNOS (neuronal NOS). The inducible isoform, iNOS, involved in immune response, binds calmodulin at physiologically relevant concentrations, and produces NO as an immune defense mechanism, as NO is a free radical with an unpaired electron. It is the proximate cause of septic shock and may function in autoimmune disease. NOS catalyzes the reaction: NOS isoforms catalyze other leak and side reactions, such as superoxide production at the expense of NADPH. As such, this stoichiometry is not generally observed, and reflects the three electrons supplied per NO by NADPH. NOSs are unusual in that they require five cofactors. Eukaryotic NOS isozymes are catalytically self-sufficient. The electron flow in the NO synthase reaction is: NADPH → FAD → FMN → heme → O2. Tetrahydrobiopterin provides an additional electron during the catalytic cycle which is replaced during turnover. NOS is the only known enzyme that binds flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), heme, tetrahydrobiopterin (BH4) and calmodulin. Arginine-derived NO synthesis has been identified in mammals, fish, birds, invertebrates, and bacteria. Best studied are mammals, where three distinct genes encode NOS isozymes: neuronal (nNOS or NOS-1), cytokine-inducible (iNOS or NOS-2) and endothelial (eNOS or NOS-3). iNOS and nNOS are soluble and found predominantly in the cytosol, while eNOS is membrane associated. Evidence has been found for NO signaling in plants, but plant genomes are devoid of homologs to the superfamily which generates NO in other kingdoms. In mammals, the endothelial isoform is the primary signal generator in the control of vascular tone, insulin secretion, and airway tone, is involved in regulation of cardiac function and angiogenesis (growth of new blood vessels). NO produced by eNOS has been shown to be a vasodilator identical to the endothelium-derived relaxing factor produced in response to shear from increased blood flow in arteries. This dilates blood vessels by relaxing smooth muscle in their linings. eNOS is the primary controller of smooth muscle tone. NO activates guanylate cyclase, which induces smooth muscle relaxation by: eNOS plays a critical role in embryonic heart development and morphogenesis of coronary arteries and cardiac valves. The neuronal isoform is involved in the development of nervous system. It functions as a retrograde neurotransmitter important in long term potentiation and hence is likely to be important in memory and learning. nNOS has many other physiological functions, including regulation of cardiac function and peristalsis and sexual arousal in males and females. An alternatively spliced form of nNOS is a major muscle protein that produces signals in response to calcium release from the SR. nNOS in the heart protects against cardiac arrhythmia induced by myocardial infarction.

[ "Nitric oxide", "Enzyme", "Endothelial Constitutive Nitric Oxide Synthase", "3-nitro-4-hydroxyphenylacetic acid", "inos protein", "ng methyl l arginine", "Cationic Amino Acid Transporter 2" ]
Parent Topic
Child Topic
    No Parent Topic