language-icon Old Web
English
Sign In

Side looking airborne radar

Side-looking airborne radar (SLAR) is an aircraft- or satellite-mounted imaging radar pointing perpendicular to the direction of flight (hence side-looking). A squinted (nonperpendicular) mode is possible also. SLAR can be fitted with a standard antenna (real aperture radar) or an antenna using synthetic aperture. Side-looking airborne radar (SLAR) is an aircraft- or satellite-mounted imaging radar pointing perpendicular to the direction of flight (hence side-looking). A squinted (nonperpendicular) mode is possible also. SLAR can be fitted with a standard antenna (real aperture radar) or an antenna using synthetic aperture. The platform of the radar moves in direction of the x-axis. The radar “looks” with the looking angle θ (or so called off-nadir angle). The angle α between x-axis and the line of sight (LOS) is called cone angle, the angle φ between the x-axis and the projection of the line of sight to the (x; y)-plane is called azimuth angle. Cone- and azimuth angle are related by cosα = cosφ ∙ cosε. On the earth surface the wave comes in at the (nominal ellipsoidal) incident angle β with respect to the vertical axis at this point. (In some publications the incident angle is denominated to as θi.) The antenna illuminates an area, the so-called footprint. The direction of the incoming wave relative to the horizontal plane may be measured also. This angle γ = 90° − β is called grazing angle. The angle ϑ = ε + 90° is used for a mathematical description in a spherical coordinate system. For the approximation of a flat earth – which is usual for airborne radar with short to medium range – the grazing angle and the depression angle can be assumed to be equal γ = ε and the incident angle is β = 180° – ϑ. The so-called LOS-vector is a unit vector u → = ( u , v , w ) t {displaystyle {vec {u}}=(u,v,w)^{t}} (in the figures shown as a red arrow) pointing from the antenna to a ground scatterer. The variables u, v, w are directional cosines with respect to the x; y; z axes. The variable u is u = cosα with α as the azimuth angle between the line of sight and the x-axis (direction of flight).

[ "Continuous-wave radar", "Bistatic radar", "Radar engineering details", "Pulse-Doppler radar", "Inverse synthetic aperture radar" ]
Parent Topic
Child Topic
    No Parent Topic