Vibrational analysis with scanning probe microscopy

The technique of vibrational analysis with scanning probe microscopy allows probing vibrational properties of materials at the submicrometer scale, and even of individual molecules. This is accomplished by integrating scanning probe microscopy (SPM) and vibrational spectroscopy (Raman scattering or/and Fourier transform infrared spectroscopy, FTIR). This combination allows for much higher spatial resolution than can be achieved with conventional Raman/FTIR instrumentation. The technique is also nondestructive, requires non-extensive sample preparation, and provides more contrast such as intensity contrast, polarization contrast and wavelength contrast, as well as providing specific chemical information and topography images simultaneously. The technique of vibrational analysis with scanning probe microscopy allows probing vibrational properties of materials at the submicrometer scale, and even of individual molecules. This is accomplished by integrating scanning probe microscopy (SPM) and vibrational spectroscopy (Raman scattering or/and Fourier transform infrared spectroscopy, FTIR). This combination allows for much higher spatial resolution than can be achieved with conventional Raman/FTIR instrumentation. The technique is also nondestructive, requires non-extensive sample preparation, and provides more contrast such as intensity contrast, polarization contrast and wavelength contrast, as well as providing specific chemical information and topography images simultaneously. Near-field scanning optical microscopy (NSOM) was described in 1984, and used in many applications since then. The combination of Raman scattering and NSOM techniques was first realized in 1995, when it was used for imaging a Rb-doped KTP crystal at a spatial resolution of 250 nm. NSOM employs two different methods for data collection and analysis: the fiber tip aperture approach and the apertureless metal tip approach. NSOM with aperture probes has a smaller aperture that can increase the spatial resolution of NSOM; however, the transmission of light to the sample and the collection efficiency of the scattered/emitted light is also diminished. The apertureless near-field scanning microscopy (ANSOM) was developed in the 1990s. ANSOM employs a metalized tip instead of an optical fiber probe. The performance of the ANSOM strongly depends on the electric field enhancement factor of the metalized tip. This technique is based on surface plasmon resonance (SPR) which is the precursor of tip-enhanced Raman scattering (TERS) and surface-enhanced Raman scattering (SERS). In 1997, Martin and Girard demonstrated theoretically that electric field under a metallic or dielectric tip (belonging to NSOM apertureless technique) can be strongly enhanced if the incident field is along the tip axis. Since then a few groups have reported Raman or fluorescence enhancement in near field optical spectroscopy by apertureless microscopy. In 2000, T. Kalkbrenner et al. used a single gold particle as a probe for apertureless scanning and presented images of an aluminium film with 3 μm holes on a glass substrate. The resolution of this apertureless method was 100 nm, that is comparable to that of fiber-based systems Recently, a carbon nanotube (CNT) having a conical end, tagged with gold nanoparticles, was applied as a nanometer-resolution optical probe tip for NSOM. NSOM images were obtained with a spatial resolution of ~5 nm, demonstrating the potential of a composite CNT probe tip for nanoscale-resolution optical imaging. There are two options for realizing apertureless NSOM-Raman technique: TERS and SERS. TERS is frequently used for apertureless NSOM-Raman and can significantly enhance the spatial resolution. This technique requires a metal tip to enhance the signal of the sample. That is why an AFM metal tip is usually used for enhancing the electric field for molecule excitation. Raman spectroscopy was combined with AFM in 1999. A very narrow aperture of the tip was required to obtain a relatively high spatial resolution; such aperture reduced the signal and was difficult to prepare. In 2000, Stȍckle et al. first designed a setup combining apertureless NSOM, Raman and AFM techniques, in which the tip had a 20 nm thick granular silver film on it. They reported a large gain in the Raman scattering intensity of a dye film (brilliant cresyl blue) deposited on a glass substrate if a metal-coated AFM tip was brought very close to the sample. About 2000-fold enhancement of Raman scattering and a spatial resolution of ~55 nm were achieved. Similarly, Nieman et al. used an illuminated AFM tip coated with a 100 nm thick film of gold to enhance Raman scattering from polymers samples and achieved a resolution of 100 nm. In the early research of TERS, the most commonly used coating materials for the tip probe were silver and gold. High-resolution spatial maps of Raman signals were obtained with this technique from molecular films of such compounds as brilliant cresyl blue, malachite green isothiocyanate and rhodamine 6G, as well as individual carbon nanotubes. IR near-field scanning optical microscopy (IR-NSOM) is a powerful spectroscopic tool because it allows subwavelength resolution in IR spectroscopy. Previously, IR-NSOM was realized by applying a solid immersion lens with a refractive index of n, which shortens wavelength (λ) to (λ/n), compared to FTIR-based IR microscopy. In 2004, an IR-SNOM achieved a spatial resolution ~λ/7 that is less than 1 μm. This resolution was further improved to about λ/60 that is 50–150 nm for a boron nitride thin film sample. IR-NSOM uses an AFM to detect the absorption response of a material to the modulated infrared radiation from an FTIR spectrometer and therefore is also referred to as AFM/FTIR spectroscopy. Two approaches have been used to measure the response of polymer systems to infrared absorption. The first mode relies on the AFM contact mode, and the second mode of operation employs a scanning thermal microscopy probe (invented in 1986) to measure the polymer’s temperature increase. In 2007, AFM was combined with infrared attenuated total reflection (IR-ATR) spectroscopy to study the dissolution process of urea in a cyclohexane/butanol solution with a high spatial resolution. There are two modes for the operation of NSOM technique, with and without an aperture. These two mode have also been combined with the near-field Raman spectroscopy. The near-field aperture must be nanosized that complicates the probe manufacturing process. Also, the aperture method usually has a very weak signal due to weak excitation and Raman scattering signal. Overall, these factors lower the signal-to-noise ratio in aperature based NSOM/Raman technique. Apertureless probes are based on a metal-coated tip and provide a stronger signal.

[ "Scanning ion-conductance microscopy", "Near-field scanning optical microscope", "Scanning capacitance microscopy" ]
Parent Topic
Child Topic
    No Parent Topic