language-icon Old Web
English
Sign In

Ultra-high-energy gamma ray

Ultra-high-energy gamma rays are gamma rays with photon energies higher than 100 TeV (0.1 PeV). They have a frequency higher than 2.42 × 1028 Hz and a wavelength shorter than 1.24 × 10−20 m. The existence of these rays were confirmed in 2019 . The highest energy astronomical sourced gamma rays detected are very-high-energy gamma rays, with the center of the Crab Nebula (thought to contain a rapidly spinning neutron star, or 'pulsar') being the source of the highest energy rays detected as of 2019. Ultra-high-energy gamma rays are gamma rays with photon energies higher than 100 TeV (0.1 PeV). They have a frequency higher than 2.42 × 1028 Hz and a wavelength shorter than 1.24 × 10−20 m. The existence of these rays were confirmed in 2019 . The highest energy astronomical sourced gamma rays detected are very-high-energy gamma rays, with the center of the Crab Nebula (thought to contain a rapidly spinning neutron star, or 'pulsar') being the source of the highest energy rays detected as of 2019. Ultra-high-energy gamma rays are of importance because they may reveal the source of cosmic rays. Discounting the relatively weak effect of gravity, they travel in a straight line from their source to an observer. This is unlike cosmic rays which have their direction of travel scrambled by magnetic fields. Sources that produce cosmic rays will almost certainly produce gamma rays as well, as the cosmic ray particles interact with nuclei or electrons to produce photons or neutral pions which in turn decay to ultra-high-energy photons. The ratio of primary cosmic ray hadrons to gamma rays also gives a clue as to the origin of cosmic rays. Although gamma rays could be produced near the source of cosmic rays, they could also be produced by interaction with cosmic microwave background by way of the Greisen–Zatsepin–Kuzmin limit cutoff above 50 EeV. Ultra-high-energy gamma rays interact with magnetic fields to produce positron electron pairs. In the Earth's magnetic field, a 1021 eV photon is expected to interact about 5000 km above the earth's surface. The high-energy particles then go on to produce more lower energy photons that can suffer the same fate. This effect creates a beam of several 1017 eV gamma ray photons heading in the same direction as the original UHE photon. This beam is less than 0.1 m wide when it strikes the atmosphere. These gamma rays are too low-energy to show the Landau–Pomeranchuk–Migdal effect. Only magnetic field perpendicular to the path of the photon causes pair production, so that photons coming in parallel to the geomagnetic field lines can survive intact until they meet the atmosphere. These photons coming through the magnetic window can produce Landau–Pomeranchuk–Migdal showers.

[ "Gamma ray", "Detector", "Cosmic ray", "Flux", "Gamma-ray astronomy" ]
Parent Topic
Child Topic
    No Parent Topic