language-icon Old Web
English
Sign In

RNA virus

An RNA virus is a virus that has RNA (ribonucleic acid) as its genetic material. This nucleic acid is usually single-stranded RNA (ssRNA) but may be double-stranded RNA (dsRNA). Notable human diseases caused by RNA viruses include Ebola virus disease, SARS, rabies, common cold, influenza, hepatitis C, hepatitis E, West Nile fever, polio and measles.Lassa virus (Arenaviridae)Lymphocytic choriomeningitis virus (Arenaviridae)Hantavirus (Bunyaviridae)Marburg Virus (Filoviridae)Ebola virus (Filoviridae)Influenza (Orthomyxoviridae)Measles (Paramyxoviridae)Mumps virus (Paramyxoviridae)Human respiratory syncytial virus (Paramyxoviridae)Parainfluenza (Paramyxoviridae)Rabies (Rhabdoviridae)Vesicular stomatitis virus (Rhabdoviridae) An RNA virus is a virus that has RNA (ribonucleic acid) as its genetic material. This nucleic acid is usually single-stranded RNA (ssRNA) but may be double-stranded RNA (dsRNA). Notable human diseases caused by RNA viruses include Ebola virus disease, SARS, rabies, common cold, influenza, hepatitis C, hepatitis E, West Nile fever, polio and measles. The International Committee on Taxonomy of Viruses (ICTV) classifies RNA viruses as those that belong to Group III, Group IV or Group V of the Baltimore classification system of classifying viruses and does not consider viruses with DNA intermediates in their life cycle as RNA viruses. Viruses with RNA as their genetic material which also include DNA intermediates in their replication cycle are called retroviruses, and comprise Group VI of the Baltimore classification. Notable human retroviruses include HIV-1 and HIV-2, the cause of the disease AIDS. Another term for RNA viruses that explicitly excludes retroviruses is ribovirus. RNA viruses can be further classified according to the sense or polarity of their RNA into negative-sense and positive-sense, or ambisense RNA viruses. Positive-sense viral RNA is similar to mRNA and thus can be immediately translated by the host cell. Negative-sense viral RNA is complementary to mRNA and thus must be converted to positive-sense RNA by an RNA-dependent RNA polymerase before translation. As such, purified RNA of a positive-sense virus can directly cause infection though it may be less infectious than the whole virus particle. Purified RNA of a negative-sense virus is not infectious by itself as it needs to be transcribed into positive-sense RNA; each virion can be transcribed to several positive-sense RNAs. Ambisense RNA viruses resemble negative-sense RNA viruses, except they also translate genes from the negative strand. The double-stranded (ds)RNA viruses represent a diverse group of viruses that vary widely in host range (humans, animals, plants, fungi, and bacteria), genome segment number (one to twelve), and virion organization (Triangulation number, capsid layers, spikes, turrets, etc.). Members of this group include the rotaviruses, renowned globally as the most common cause of gastroenteritis in young children, and picobirnaviruses, renowned worldwide as the most commonly occurring virus in fecal samples of both humans and animals with or without signs of diarrhea. Bluetongue virus is an economically important pathogen of cattle and sheep. In recent years, remarkable progress has been made in determining, at atomic and subnanometeric levels, the structures of a number of key viral proteins and of the virion capsids of several dsRNA viruses, highlighting the significant parallels in the structure and replicative processes of many of these viruses. RNA viruses generally have very high mutation rates compared to DNA viruses, because viral RNA polymerases lack the proofreading ability of DNA polymerases. This is one reason why it is difficult to make effective vaccines to prevent diseases caused by RNA viruses.Retroviruses also have a high mutation rate even though their DNA intermediate integrates into the host genome (and is thus subject to host DNA proofreading once integrated), because errors during reverse transcription are embedded into both strands of DNA before integration.Some genes of RNA virus are important to the viral replication cycles and mutations are not tolerated. For example, the region of the hepatitis C virus genome that encodes the core protein is highly conserved, because it contains an RNA structure involved in an internal ribosome entry site.

[ "RNA", "Genome", "Narnaviridae", "Family Narnaviridae", "Botrytis porri", "quasispecies theory", "Genus Metapneumovirus" ]
Parent Topic
Child Topic
    No Parent Topic