language-icon Old Web
English
Sign In

Galileo (satellite navigation)

Galileo is the global navigation satellite system (GNSS) that went live in 2016, created by the European Union (EU) through the European GNSS Agency (GSA), headquartered in Prague in the Czech Republic, with two ground operations centres, Oberpfaffenhofen near Munich in Germany and Fucino in Italy. The €10 billion project is named after the Italian astronomer Galileo Galilei. One of the aims of Galileo is to provide an independent high-precision positioning system so European nations do not have to rely on the U.S. GPS, or the Russian GLONASS systems, which could be disabled or degraded by their operators at any time.The use of basic (lower-precision) Galileo services will be free and open to everyone. The higher-precision capabilities will be available for paying commercial users. Galileo is intended to provide horizontal and vertical position measurements within 1-metre precision, and better positioning services at higher latitudes than other positioning systems.Galileo is also to provide a new global search and rescue (SAR) function as part of the MEOSAR system. (Last update: 29 July 2018)For a more complete list, see list of Galileo satellites Galileo is the global navigation satellite system (GNSS) that went live in 2016, created by the European Union (EU) through the European GNSS Agency (GSA), headquartered in Prague in the Czech Republic, with two ground operations centres, Oberpfaffenhofen near Munich in Germany and Fucino in Italy. The €10 billion project is named after the Italian astronomer Galileo Galilei. One of the aims of Galileo is to provide an independent high-precision positioning system so European nations do not have to rely on the U.S. GPS, or the Russian GLONASS systems, which could be disabled or degraded by their operators at any time.The use of basic (lower-precision) Galileo services will be free and open to everyone. The higher-precision capabilities will be available for paying commercial users. Galileo is intended to provide horizontal and vertical position measurements within 1-metre precision, and better positioning services at higher latitudes than other positioning systems.Galileo is also to provide a new global search and rescue (SAR) function as part of the MEOSAR system. The first Galileo test satellite, the GIOVE-A, was launched 28 December 2005, while the first satellite to be part of the operational system was launched on 21 October 2011. As of July 2018, 26 of the planned 30 active satellites are in orbit. Galileo started offering Early Operational Capability (EOC) on 15 December 2016, providing initial services with a weak signal, and is expected to reach Full Operational Capability (FOC) in 2019. The complete 30-satellite Galileo system (24 operational and 6 active spares) is expected by 2020. It is expected that the next generation of satellites will begin to become operational by 2025 to replace older equipment. Older systems can then be used for backup capabilities. There are 22 satellites in usable condition (satellite is operational and contributing to the service provision), 2 satellites are in 'testing' and 2 more are marked as not available. In 1999, the different concepts of the three main contributors of ESA (Germany, France and Italy) for Galileo were compared and reduced to one by a joint team of engineers from all three countries. The first stage of the Galileo programme was agreed upon officially on 26 May 2003 by the European Union and the European Space Agency.The system is intended primarily for civilian use, unlike the more military-oriented systems of the United States (GPS), Russia (GLONASS), and China (BeiDou-1/2). The European system will only be subject to shutdown for military purposes in extreme circumstances (like armed conflict). It will be available at its full precision to both civil and military users. The countries that contribute most to the Galileo Project are Germany and Italy. The European Commission had some difficulty funding the project's next stage, after several allegedly 'per annum' sales projection graphs for the project were exposed in November 2001 as 'cumulative' projections which for each year projected included all previous years of sales. The attention that was brought to this multibillion-euro growing error in sales forecasts resulted in a general awareness in the Commission and elsewhere that it was unlikely that the program would yield the return on investment that had previously been suggested to investors and decision-makers.On 17 January 2002, a spokesman for the project stated that, as a result of US pressure and economic difficulties, 'Galileo is almost dead.' A few months later, however, the situation changed dramatically. European Union member states decided it was important to have a satellite-based positioning and timing infrastructure that the US could not easily turn off in times of political conflict. The European Union and the European Space Agency agreed in March 2002 to fund the project, pending a review in 2003 (which was completed on 26 May 2003). The starting cost for the period ending in 2005 is estimated at €1.1 billion. The required satellites (the planned number is 30) were to be launched between 2011 and 2014, with the system up and running and under civilian control from 2019. The final cost is estimated at €3 billion, including the infrastructure on Earth, constructed in 2006 and 2007. The plan was for private companies and investors to invest at least two-thirds of the cost of implementation, with the EU and ESA dividing the remaining cost. The base Open Service is to be available without charge to anyone with a Galileo-compatible receiver, with an encrypted higher-bandwidth improved-precision Commercial Service originally planned to be available at a cost, but in February 2018 the high accuracy service (HAS) (providing Precise Point Positioning data on the E6 frequency) was agreed to be made freely available, with the authentication service remaining commercial. By early 2011 costs for the project had run 50% over initial estimates. Galileo is intended to be an EU civilian GNSS that allows all users access to it. Initially GPS reserved the highest quality signal for military use, and the signal available for civilian use was intentionally degraded (Selective Availability). This changed with President Bill Clinton signing a policy directive in 1996 to turn off Selective Availability. Since May 2000 the same precision signal has been provided to both civilians and the military. Since Galileo was designed to provide the highest possible precision (greater than GPS) to anyone, the US was concerned that an enemy could use Galileo signals in military strikes against the US and its allies (some weapons like missiles use GNSSs for guidance). The frequency initially chosen for Galileo would have made it impossible for the US to block the Galileo signals without also interfering with its own GPS signals. The US did not want to lose their GNSS capability with GPS while denying enemies the use of GNSS. Some US officials became especially concerned when Chinese interest in Galileo was reported.

[ "Geodesy", "Remote sensing", "Chaos terrain", "International Year of Astronomy", "Phases of Venus", "Low-gain antenna", "Copernican heliocentrism" ]
Parent Topic
Child Topic
    No Parent Topic