language-icon Old Web
English
Sign In

Solar-assisted heat pump

A solar-assisted heat pump (SAHP) is a machine that represents the integration of a heat pump and thermal solar panels in a single integrated system. Typically these two technologies are used separately (or only placing them in parallel) to produce hot water. In this system the solar thermal panel performs the function of the low temperature heat source and the heat produced is used to feed the heat pump's evaporator. The goal of this system is to get high COP and then produce energy in a more efficient and less expensive way. A solar-assisted heat pump (SAHP) is a machine that represents the integration of a heat pump and thermal solar panels in a single integrated system. Typically these two technologies are used separately (or only placing them in parallel) to produce hot water. In this system the solar thermal panel performs the function of the low temperature heat source and the heat produced is used to feed the heat pump's evaporator. The goal of this system is to get high COP and then produce energy in a more efficient and less expensive way. It is possible to use any type of solar thermal panel (sheet and tubes, roll-bond, heat pipe, thermal plates) or hybrid (mono/polycrystalline, thin film) in combination with the heat pump. The use of a hybrid panel is preferable because it allows covering a part of the electricity demand of the heat pump and reduce the power consumption and consequently the variable costs of the system. The operating conditions' optimization of this system is the main problem, because there are two opposing trends of the performance of the two sub-systems: by way of example, a decreasing of the evaporation temperature of the working fluid generates an increasing of the thermal efficiency of the solar panel but a decreasing in the performance of the heat pump, with a decreasing in the COP. The target for the optimization is normally the minimization of the electrical consumption of the heat pump, or primary energy required by an auxiliary boiler which supplies the load not covered by renewable source. There are two possible configurations of this system, which are distinguished by the presence or not of an intermediate fluid that transports the heat from the panel to the heat pump. Machines called indirect-expansion mainly use water as a heat transfer fluid, mixed with an antifreeze fluid (usually glycol) to avoid ice formation phenomena during winter period. The machines called direct-expansion place the refrigerant fluid directly inside the hydraulic circuit of the thermal panel, where the phase transition takes place. This second configuration, even though it is more complex from a technical point of view, has several advantages: Generally speaking the use of this integrated system is an efficient way to employ the heat produced by the thermal panels in winter period, something that normally wouldn't be exploited because its temperature is too low. In comparison with only heat pump utilization, it is possible to reduce the amount of electrical energy consumed by the machine during the weather evolution from winter season to the spring, and then finally only use thermal solar panels to produce all the heat demand required (only in case of indirect-expansion machine), thus saving on variable costs. In comparison with a system with only thermal panels, it is possible to provide a greater part of the required winter heating using a non-fossil energy source. Compared to geothermal heat pumps, the main advantage is that the installation of a piping field in the soil is not required, which results in a lower cost of investment (drilling accounts for about 50% of the cost of a geothermal heat pump system) and in more flexibility of machine installation, even in areas in which there is limited available space. Furthermore, there are no risks related to possible thermal soil impoverishment. Similarly to air source heat pumps, solar-assisted heat pump performance is affected by atmospheric conditions, although this effect is less significant. Solar-assisted heat pump performance is generally affected by varying solar radiation intensity rather than air temperature oscillation. This produces a greater SCOP (Seasonal COP). Additionally, evaporation temperature of the working fluid is higher than in air source heat pumps, so in general the coefficient of performance is significantly higher.

[ "Heat pump", "Hybrid heat", "Coefficient of performance" ]
Parent Topic
Child Topic
    No Parent Topic