language-icon Old Web
English
Sign In

Food coloring

Food coloring, or color additive, is any dye, pigment or substance that imparts color when it is added to food or drink. They come in many forms consisting of liquids, powders, gels, and pastes. Food coloring is used both in commercial food production and in domestic cooking. Food colorants are also used in a variety of non-food applications including cosmetics, pharmaceuticals, home craft projects, and medical devices.Thus, with potted meat, fish and sauces taken at breakfast he would consume more or less Armenian bole, red lead, or even bisulphuret of mercury. At dinner with his curry or cayenne he would run the chance of a second dose of lead or mercury; with pickles, bottled fruit and vegetables he would be nearly sure to have copper administrated to him; and while he partook of bon-bons at dessert, there was no telling of the number of poisonous pigments he might consume. Again his tea if mixed or green, he would certainly not escape without the administration of a little Prussian blue...Betanin, a magenta dye, mainly produced from beets.Anthocyanin, a red to blue dye depending on functional groups and pH.beta-Carotene, a yellow to orange colorant.Indigo Carmine, which is blue.Allura Red AC, which is red.Quinoline Yellow WS, which is yellow. Food coloring, or color additive, is any dye, pigment or substance that imparts color when it is added to food or drink. They come in many forms consisting of liquids, powders, gels, and pastes. Food coloring is used both in commercial food production and in domestic cooking. Food colorants are also used in a variety of non-food applications including cosmetics, pharmaceuticals, home craft projects, and medical devices. People associate certain colors with certain flavors, and the color of food can influence the perceived flavor in anything from candy to wine. Sometimes the aim is to simulate a color that is perceived by the consumer as natural, such as adding red coloring to glacé cherries (which would otherwise be beige), but sometimes it is for effect, like the green ketchup that Heinz launched in 1999. Color additives are used in foods for many reasons including: The addition of colorants to foods is thought to have occurred in Egyptian cities as early as 1500 BC, when candy makers added natural extracts and wine to improve the products' appearance. During the Middle Ages, the economy in the European countries was based on agriculture, and the peasants were accustomed to producing their own food locally or trading within the village communities. Under feudalism, aesthetic aspects were not considered, at least not by the vast majority of the generally very poor population. This situation changed with urbanization at the beginning of the Modern Age, when trade emerged—especially the import of precious spices and colors. One of the very first food laws, created in Augsburg, Germany, in 1531, concerned spices or colorants and required saffron counterfeiters to be burned. With the onset of the industrial revolution, people became dependent on foods produced by others. These new urban dwellers demanded food at low cost. Analytical chemistry was still primitive and regulations few. The adulteration of foods flourished. Heavy metal and other inorganic element-containing compounds turned out to be cheap and suitable to 'restore' the color of watered-down milk and other foodstuffs, some more lurid examples being: Sellers at the time offered more than 80 artificial coloring agents, some invented for dyeing textiles, not foods. .mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 40px}.mw-parser-output .templatequote .templatequotecite{line-height:1.5em;text-align:left;padding-left:1.6em;margin-top:0} Many color additives had never been tested for toxicity or other adverse effects. Historical records show that injuries, even deaths, resulted from tainted colorants. In 1851, about 200 people were poisoned in England, 17 of them fatally, directly as a result of eating adulterated lozenges. In 1856, mauveine, the first synthetic color, was developed by Sir William Henry Perkin and by the turn of the century, unmonitored color additives had spread through Europe and the United States in all sorts of popular foods, including ketchup, mustard, jellies, and wine. Originally, these were dubbed 'coal-tar' colors because the starting materials were obtained from bituminous coal. Many synthesized dyes were easier and less costly to produce and were superior in coloring properties when compared to naturally derived alternatives. Some synthetic food colorants are diazo dyes. Diazo dyes are prepared by coupling of a diazonium compound with a second aromatic hydrocarbons. The resulting compounds contain conjugated systems that efficiently absorb light in the visible parts of the spectrum, i.e. they are deeply colored. The attractiveness of the synthetic dyes is that their color, lipophilicity, and other attributes can be engineered by the design of the specific dyestuff. The color of the dyes can be controlled by selecting the number of azo-groups and various substituents. Yellow shades are often achieved by using acetoacetanilide. Red colors are often azo compounds. The pair indigo and indigo carmine exhibit the same blue color, but the former is soluble in lipids, and the latter is water-soluble because it has been fitted with sulfonate functional groups. Concerns over food safety led to numerous regulations throughout the world. German food regulations released in 1882 stipulated the exclusion of dangerous minerals such as arsenic, copper, chromium, lead, mercury and zinc, which were frequently used as ingredients in colorants. In contrast to today, these first laws followed the principle of a negative listing (substances not allowed for use); they were already driven by the main principles of today's food regulations all over the world, since all of these regulations follow the same goal: the protection of consumers from toxic substances and from fraud. In the United States, the Pure Food and Drug Act of 1906 reduced the permitted list of synthetic colors from 700 down to seven. The seven dyes initially approved were Ponceau 3R (FD&C Red No. 1), amaranth (FD&C Red No. 2), erythrosine (FD&C Red No. 3), indigotine (FD&C Blue No. 2), Light Green SF (FD&C Green No. 2), Naphthol yellow 1 (FD&C Yellow No. 1), and Orange 1 (FD&C Orange No. 1). Even with updated food laws, adulteration continued for many years and this, together with more recent adverse press comments on food colors and health, has continued to contribute to consumer concern about color addition to foodstuffs. In the 20th century, the improvement of chemical analysis and the development of trials to identify the toxic features of substances added to foods led to the replacement of the negative lists by lists of substances allowed to be used for the production and the improvement of foods. This principle is called a positive listing, and almost all recent legislations are based on it. Positive listing implies that substances meant for human consumption have been tested for their safety, and that they have to meet specified purity criteria prior to their approval by the corresponding authorities. In 1962, the first EU directive (62/2645/EEC) approved 36 colorants, of which 20 were naturally derived and 16 were synthetic. This directive did not list which food products the colorants could or could not be used in. At that time, each member state could designate where certain colors could and could not be used. In Germany, for example, quinoline yellow was allowed in puddings and desserts, but tartrazine was not. The reverse was true in France. This was updated in 1989 with 89/107/EEC, which concerned food additives authorized for use in foodstuffs.

[ "Food science", "Chromatography", "Pathology", "Organic chemistry", "Blue food coloring" ]
Parent Topic
Child Topic
    No Parent Topic