language-icon Old Web
English
Sign In

Angstrom

The angstrom (/ˈæŋstrəm/, /ˈæŋstrʌm/; ANG-strəm, ANG-strum) or ångström is a unit of length equal to 10−10 m; that is, one ten-billionth of a metre, 0.1 nanometre, or 100 picometres. Its symbol is Å, a letter of the Swedish alphabet. The angstrom (/ˈæŋstrəm/, /ˈæŋstrʌm/; ANG-strəm, ANG-strum) or ångström is a unit of length equal to 10−10 m; that is, one ten-billionth of a metre, 0.1 nanometre, or 100 picometres. Its symbol is Å, a letter of the Swedish alphabet. The ångström is not a part of the SI system of units, but it can be considered part of the metric system. While deprecated by the IBWM and the NIST, the unit is still often used in the natural sciences and technology to express sizes of atoms, molecules, microscopic biological structures, and lengths of chemical bonds, arrangement of atoms in crystals, wavelengths of electromagnetic radiation, and dimensions of integrated circuit parts. The atomic (covalent) radii of phosphorus, sulfur, and chlorine are about 1 ångström, while that of hydrogen is about 0.5 ångströms. Visible light has wavelengths in the range of 4000–7000 Å. The unit is named after the nineteenth-century Swedish physicist Anders Jonas Ångström (Swedish: ). The IBWM and the NIST spell it as ångström; however, this spelling is rare in English texts and not even recorded in some popular US dictionaries. The symbol should always be 'Å', no matter how the unit is spelled; but 'A' may occur in less formal contexts or typographically limited media. The ångström is used extensively in crystallography, solid-state physics and chemistry as a unit for d-spacings (the distance between atomic planes in a crystal), cell parameters, inter-atomic distances and x-ray wavelengths, as these values are often in the 1–10 Å range. For example, the Inorganic Crystal Structure Database presents all these values using the ångström. Anders Jonas Ångström was a pioneer in the field of spectroscopy, and he is also well known for his studies of astrophysics, heat transfer, terrestrial magnetism, and the aurora borealis. In 1852, Ångström formulated in Optiska undersökningar (Optical researches), a law of absorption, later modified somewhat and known as Kirchhoff's law of thermal radiation. In 1868, Ångström created a chart of the spectrum of sunlight, in which he expressed the wavelengths of electromagnetic radiation in the electromagnetic spectrum in multiples of one ten-millionth of a millimetre (or 10−7 mm.) Because the human eye is sensitive to wavelengths from about 4000 to 7000 Å (visible light), that choice of unit supported sufficiently accurate measurements of visible wavelengths without resorting to fractional numbers. Ångström's chart and table of wavelengths in the solar spectrum became widely used in solar physics, which adopted the unit and named it after him. It subsequently spread to the rest of astronomical spectroscopy, atomic spectroscopy, and subsequently to other sciences that deal with atomic-scale structures. Though intended to correspond to 10−10 metres, for precise spectral analysis, the ångström had to be defined more accurately than the metre, which until 1960 was still defined based on the length of a bar of metal held in Paris. The use of metal bars had been involved in an early error in the value of the ångström of about one part in 6000. Ångström took the precaution of having the standard bar he used checked against a standard in Paris, but the metrologist Henri Tresca reported it to be so much shorter than it really was that Ångström's corrected results were more in error than the uncorrected ones. In 1892–1895, Albert A. Michelson defined the ångström so that the red line of cadmium was equal to 6438.47 angstroms. In 1907, the International Union for Cooperation in Solar Research (which later became the International Astronomical Union) defined the international ångström by declaring the wavelength of the red line of cadmium (in dry air at 15 °C (hydrogen scale) and 760 mmHg under a gravity of 9.8067 m/s2) equal to 6438.4696 international angstroms, and this definition was endorsed by the International Bureau of Weights and Measures in 1927. From 1927 to 1960, the ångström remained a secondary unit of length for use in spectroscopy, defined separately from the metre. In 1960, the metre itself was redefined in spectroscopic terms, which allowed the ångström to be redefined as being exactly 0.1 nanometres. The ångström is internationally recognized, but is not a formal part of the International System of Units (SI). The closest SI unit is the nanometre (10−9 m). The International Committee for Weights and Measures officially discourages its use, and it is not included in the European Union's catalogue of units of measure that may be used within its internal market.

[ "Crystallography", "Analytical chemistry", "Inorganic chemistry", "Tazofelone", "3-Dehydroquinate dehydratase", "UDP-N-acetylglucosamine 1-carboxyvinyltransferase" ]
Parent Topic
Child Topic
    No Parent Topic