language-icon Old Web
English
Sign In

Neutron emission

Neutron emission is a mode of radioactive decay in which one or more neutrons are ejected from a nucleus. It occurs in the most neutron-rich/proton-deficient nucleides, and also from excited states of other nucleides as in photoneutron emission and beta-delayed neutron emission. As only a neutron is lost by this process the number of protons remains unchanged, and an atom does not become an atom of a different element, but a different isotope of the same element. Neutron emission is a mode of radioactive decay in which one or more neutrons are ejected from a nucleus. It occurs in the most neutron-rich/proton-deficient nucleides, and also from excited states of other nucleides as in photoneutron emission and beta-delayed neutron emission. As only a neutron is lost by this process the number of protons remains unchanged, and an atom does not become an atom of a different element, but a different isotope of the same element. Neutrons are also produced in the spontaneous and induced fission of certain heavy nucleides. As a consequence of the Pauli exclusion principle nuclei with an excess of protons or neutrons have a higher average energy per nucleon. Nuclei with a sufficient excess of neutrons have a greater energy than the combination of a free neutron and a nucleus with one less neutron, and therefore can decay by neutron emission. Nuclei which can decay by this mode are described as lying beyond the neutron drip line. Two examples of isotopes that emit neutrons are beryllium-13 (decaying to beryllium-12 with a mean life 2.7×10−21 s) and helium-5 (helium-4, 7×10−22 s). In tables of nuclear decay modes neutron emission is commonly denoted by the abbreviation n.

[ "Fission", "Neutron temperature", "Cold fission", "Isotopes of samarium", "Ternary fission", "Prompt neutron", "Xenon-135" ]
Parent Topic
Child Topic
    No Parent Topic