language-icon Old Web
English
Sign In

Mollusc shell

The mollusc (or mollusk) shell is typically a calcareous exoskeleton which encloses, supports and protects the soft parts of an animal in the phylum Mollusca, which includes snails, clams, tusk shells, and several other classes. Not all shelled molluscs live in the sea; many live on the land and in freshwater. The mollusc (or mollusk) shell is typically a calcareous exoskeleton which encloses, supports and protects the soft parts of an animal in the phylum Mollusca, which includes snails, clams, tusk shells, and several other classes. Not all shelled molluscs live in the sea; many live on the land and in freshwater. The ancestral mollusc is thought to have had a shell, but this has subsequently been lost or reduced on some families, such as the squid, octopus, and some smaller groups such as the caudofoveata and solenogastres, and the highly derived Xenoturbella. Today, over 100,000 living species bear a shell; there is some dispute as to whether these shell-bearing molluscs form a monophyletic group (conchifera) or whether shell-less molluscs are interleaved into their family tree. Malacology, the scientific study of molluscs as living organisms, has a branch devoted to the study of shells, and this is called conchology—although these terms used to be, and to a minor extent still are, used interchangeably, even by scientists (this is more common in Europe). Within some species of molluscs, there is often a wide degree of variation in the exact shape, pattern, ornamentation, and color of the shell. A mollusc shell is formed, repaired and maintained by a part of the anatomy called the mantle. Any injuries to or abnormal conditions of the mantle are usually reflected in the shape and form and even color of the shell. When the animal encounters harsh conditions that limit its food supply, or otherwise cause it to become dormant for a while, the mantle often ceases to produce the shell substance. When conditions improve again and the mantle resumes its task, a 'growth line' is produced. The mantle edge secretes a shell which has two components. The organic constituent is mainly made up of polysaccharides and glycoproteins; its composition may vary widely: some molluscs employ a wide range of chitin-control genes to create their matrix, whereas others express just one, suggesting that the role of chitin in the shell framework is highly variable; it may even be absent in monoplacophora. This organic framework controls the formation of calcium carbonate crystals (never phosphate, with the questionable exception of Cobcrephora), and dictates when and where crystals start and stop growing, and how fast they expand; it even controls the polymorph of the crystal deposited, controlling positioning and elongation of crystals and preventing their growth where appropriate. The shell formation requires certain biological machinery. The shell is deposited within a small compartment, the extrapallial space, which is sealed from the environment by the periostracum, a leathery outer layer around the rim of the shell, where growth occurs. This caps off the extrapallial space, which is bounded on its other surfaces by the existing shell and the mantle.:475 The periostracum acts as a framework from which the outer layer of carbonate can be suspended, but also, in sealing the compartment, allows the accumulation of ions in concentrations sufficient for crystallization to occur. The accumulation of ions is driven by ion pumps packed within the calcifying epithelium. Calcium ions are obtained from the organism's environment through the gills, gut and epithelium, transported by the haemolymph ('blood') to the calcifying epithelium, and stored as granules within or in-between cells ready to be dissolved and pumped into the extrapallial space when they are required. The organic matrix forms the scaffold that directs crystallization, and the deposition and rate of crystals is also controlled by hormones produced by the mollusc.:475 Because the extrapallial space is supersaturated, the matrix could be thought of as impeding, rather than encouraging, carbonate deposition; although it does act as a nucleating point for the crystals and controls their shape, orientation and polymorph, it also terminates their growth once they reach the necessary size. Nucleation is endoepithelial in Neopilina and Nautilus, but exoepithelial in the bivalves and gastropods. The formation of the shell involves a number of genes and transcription factors. On the whole, the transcription factors and signalling genes are deeply conserved, but the proteins in the secretome are highly derived and rapidly evolving. engrailed serves to demark the edge of the shell field; dpp controls the shape of the shell, and Hox1 and Hox4 have been implicated in the onset of mineralization. In gastropod embryos, Hox1 is expressed where the shell is being accreted; however no association has been observed between Hox genes and cephalopod shell formation. Perlucin increases the rate at which calcium carbonate precipitates to form a shell when in saturated seawater; this protein is from the same group of proteins (C-type lectins) as those responsible for the formation of eggshell and pancreatic stone crystals, but the role of C-type lectins in mineralization is unclear. Perlucin operates in association with Perlustrin, a smaller relative of lustrin A, a protein responsible for the elasticity of organic layers that makes nacre so resistant to cracking. Lustrin A bears remarkable structural similarity to the proteins involved in mineralization in diatoms – even though diatoms use silica, not calcite, to form their tests! The shell-secreting area is differentiated very early in embryonic development. An area of the ectoderm thickens, then invaginates to become a 'shell gland'. The shape of this gland is tied to the form of the adult shell; in gastropods, it is a simple pit, whereas in bivalves, it forms a groove which will eventually become the hinge line between the two shells, where they are connected by a ligament. The gland subsequently evaginates in molluscs that produce an external shell. Whilst invaginated, a periostracum - which will form a scaffold for the developing shell - is formed around the opening of the invagination, allowing the deposition of the shell when the gland is everted. A wide range of enzymes are expressed during the formation of the shell, including carbonic anhydrase, alkaline phosphatase, and DOPA-oxidase (tyrosinase)/peroxidase.

[ "Ecology", "Zoology", "Anatomy", "Mineralogy", "shell" ]
Parent Topic
Child Topic
    No Parent Topic