language-icon Old Web
English
Sign In

Granulite

Granulites are a class of high-grade metamorphic rocks of the granulite facies that have experienced high-temperature and moderate-pressure metamorphism. They are medium to coarse–grained and mainly composed of feldspars sometimes associated with quartz and anhydrous ferromagnesian minerals, with granoblastic texture and gneissose to massive structure. They are of particular interest to geologists because many granulites represent samples of the deep continental crust. Some granulites experienced decompression from deep in the Earth to shallower crustal levels at high temperature; others cooled while remaining at depth in the Earth. The minerals present in a granulite will vary depending on the parent rock of the granulite and the temperature and pressure conditions experienced during metamorphism. A common type of granulite found in high-grade metamorphic rocks of the continents contains pyroxene, plagioclase feldspar and accessory garnet, oxides and possibly amphiboles. Both clinopyroxene and orthopyroxene may be present, and in fact, the coexistence of clino- and orthopyroxene in a metabasite (metamorphed basalt) defines the granulite facies. A granulite may be visually quite distinct with abundant small pink or red pyralspite garnets in a 'granular' holocrystalline matrix. Concentrations of garnets, micas, or amphiboles may form along a linear pattern resembling gneiss or migmatite banding. Granulites form at crustal depths, typically during regional metamorphism at high thermal gradients of greater than 30 °C/km. In continental crustal rocks, biotite may break down at high temperatures to form orthopyroxene + potassium feldspar + water, producing a granulite. Other possible minerals formed at dehydration melting conditions include sapphirine, spinel, sillimanite, and osumilite. Some assemblages such as sapphirine + quartz indicate very high temperatures of greater than 900 °C. Some granulites may represent the residues of partial melting at extraction of felsic melts in variable amounts, and in extreme cases represent rocks that all constituent minerals are anhydrous and thus look as if they did not melt at ultrahigh temperature conditions. Therefore, very high temperatures of 900 to 1150 °C are even necessary to produce the granulite-facies mineral assemblages. Such high temperatures at crustal depths only can be delivered by upwelling of the asthenospheric mantle in continental rifting settings, which can cause the regional metamorphism at the high thermal gradients of greater than 30 °C/km. The granulite facies is determined by the lower temperature boundary of 700 +/− 50 °C and the pressure range of 2–15 kb. The most common mineral assemblage of granulite facies consists of antiperthitic plagioclase, alkali feldspar containing up to 50% albite and Al2O3-rich pyroxenes. Transition between amphibolite and granulite facies is defined by these reaction isograds: Hornblende granulite subfacies is a transitional coexistence region of anhydrous and hydrated ferromagnesian minerals, so the above-mentioned isograds mark the boundary with pyroxene granulite subfacies – facies with completely anhydrous mineral assemblages. Granulite (Latin granulum, 'a little grain') is a name used by petrographers to designate two distinct classes of rocks. According to the terminology of the French school it signifies a granite in which both kinds of mica (muscovite and biotite) occur, and corresponds to the German Granit, or to the English muscovite biotite granite. This application has not been accepted generally. To the German petrologists granulite means a more or less banded fine-grained metamorphic rock, consisting mainly of quartz and feldspar in very small irregular crystals and usually also containing a fair number of minute, rounded, pale-red garnets. Among English and American geologists the term is generally employed in this sense.

[ "Metamorphism", "Facies", "Sapphirine", "Ultra-high-temperature metamorphism", "Limpopo Belt", "Metamorphic reaction", "Calc–silicate rock" ]
Parent Topic
Child Topic
    No Parent Topic