language-icon Old Web
English
Sign In

Yttrium

Yttrium is a chemical element with the symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a 'rare-earth element'. Yttrium is almost always found in combination with lanthanide elements in rare-earth minerals, and is never found in nature as a free element. 89Y is the only stable isotope, and the only isotope found in the Earth's crust. Yttrium is a chemical element with the symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a 'rare-earth element'. Yttrium is almost always found in combination with lanthanide elements in rare-earth minerals, and is never found in nature as a free element. 89Y is the only stable isotope, and the only isotope found in the Earth's crust. In 1787, Carl Axel Arrhenius found a new mineral near Ytterby in Sweden and named it ytterbite, after the village. Johan Gadolin discovered yttrium's oxide in Arrhenius' sample in 1789, and Anders Gustaf Ekeberg named the new oxide yttria. Elemental yttrium was first isolated in 1828 by Friedrich Wöhler. The most important uses of yttrium are LEDs and phosphors, particularly the red phosphors in television set cathode ray tube (CRT) displays. Yttrium is also used in the production of electrodes, electrolytes, electronic filters, lasers, superconductors, various medical applications, and tracing various materials to enhance their properties. Yttrium has no known biological role. Exposure to yttrium compounds can cause lung disease in humans. Yttrium is a soft, silver-metallic, lustrous and highly crystalline transition metal in group 3. As expected by periodic trends, it is less electronegative than its predecessor in the group, scandium, and less electronegative than the next member of period 5, zirconium; additionally, it is more electronegative to its successor in its group, lanthanum, surpassing in electronegativity to the later lanthanides due to the lanthanide contraction. Yttrium is the first d-block element in the fifth period. The pure element is relatively stable in air in bulk form, due to passivation of a protective oxide (Y2O3) film that forms on the surface. This film can reach a thickness of 10 µm when yttrium is heated to 750 °C in water vapor. When finely divided, however, yttrium is very unstable in air; shavings or turnings of the metal can ignite in air at temperatures exceeding 400 °C. Yttrium nitride (YN) is formed when the metal is heated to 1000 °C in nitrogen. The similarities of yttrium to the lanthanides are so strong that the element has historically been grouped with them as a rare-earth element, and is always found in nature together with them in rare-earth minerals. Chemically, yttrium resembles those elements more closely than its neighbor in the periodic table, scandium, and if physical properties were plotted against atomic number, it would have an apparent number of 64.5 to 67.5, placing it between the lanthanides gadolinium and erbium. It often also falls in the same range for reaction order, resembling terbium and dysprosium in its chemical reactivity. Yttrium is so close in size to the so-called 'yttrium group' of heavy lanthanide ions that in solution, it behaves as if it were one of them. Even though the lanthanides are one row farther down the periodic table than yttrium, the similarity in atomic radius may be attributed to the lanthanide contraction. One of the few notable differences between the chemistry of yttrium and that of the lanthanides is that yttrium is almost exclusively trivalent, whereas about half the lanthanides can have valences other than three; nevertheless, only for four of the fifteen lanthanides are these other valences important in aqueous solution (CeIV, SmII, EuII, and YbII).

[ "Analytical chemistry", "Organic chemistry", "Inorganic chemistry", "Metallurgy", "Oxide", "Yttrium Radioisotopes", "YTTRIUM IODIDE", "Yttrium silicate", "YTTRIUM FLUORIDE", "Yttrium earths" ]
Parent Topic
Child Topic
    No Parent Topic