language-icon Old Web
English
Sign In

Parity (mathematics)

In mathematics, parity is the property of an integer's inclusion in one of two categories: even or odd. An integer is even if it is divisible by two and odd if it is not even. For example, 6 is even because there is no remainder when dividing it by 2. By contrast, 3, 5, 7, 21 leave a remainder of 1 when divided by 2. Examples of even numbers include −4, 0, 82 and 178. In particular, zero is an even number. Some examples of odd numbers are −5, 3, 29, and 73. It is well to direct the pupil's attention here at once to a great far-reaching law of nature and of thought. It is this, that between two relatively different things or ideas there stands always a third, in a sort of balance, seeming to unite the two. Thus, there is here between odd and even numbers one number (one) which is neither of the two. Similarly, in form, the right angle stands between the acute and obtuse angles; and in language, the semi-vowels or aspirants between the mutes and vowels. A thoughtful teacher and a pupil taught to think for himself can scarcely help noticing this and other important laws. In mathematics, parity is the property of an integer's inclusion in one of two categories: even or odd. An integer is even if it is divisible by two and odd if it is not even. For example, 6 is even because there is no remainder when dividing it by 2. By contrast, 3, 5, 7, 21 leave a remainder of 1 when divided by 2. Examples of even numbers include −4, 0, 82 and 178. In particular, zero is an even number. Some examples of odd numbers are −5, 3, 29, and 73. A formal definition of an even number is that it is an integer of the form n = 2k, where k is an integer; it can then be shown that an odd number is an integer of the form n = 2k + 1. It is important to realize that the above definition of parity applies only to integer numbers, hence it cannot be applied to numbers like 1/2 or 4.201. See the section 'Higher mathematics' below for some extensions of the notion of parity to a larger class of 'numbers' or in other more general settings. The sets of even and odd numbers can be defined as following: A number (i.e., integer) expressed in the decimal numeral system is even or odd according to whether its last digit is even or odd.That is, if the last digit is 1, 3, 5, 7, or 9, then it is odd; otherwise it is even. The same idea will work using any even base.In particular, a number expressed in the binary numeral system is odd if its last digit is 1 and even if its last digit is 0.In an odd base, the number is even according to the sum of its digits – it is even if and only if the sum of its digits is even. The following laws can be verified using the properties of divisibility. They are a special case of rules in modular arithmetic, and are commonly used to check if an equality is likely to be correct by testing the parity of each side. As with ordinary arithmetic, multiplication and addition are commutative and associative in modulo 2 arithmetic, and multiplication is distributive over addition. However, subtraction in modulo 2 is identical to addition, so subtraction also possesses these properties, which is not true for normal integer arithmetic. The structure ({even, odd}, +, ×) is in fact a field with just two elements. The division of two whole numbers does not necessarily result in a whole number. For example, 1 divided by 4 equals 1/4, which is neither even nor odd, since the concepts even and odd apply only to integers.But when the quotient is an integer, it will be even if and only if the dividend has more factors of two than the divisor. The ancient Greeks considered 1, the monad, to be neither fully odd nor fully even. Some of this sentiment survived into the 19th century: Friedrich Wilhelm August Fröbel's 1826 The Education of Man instructs the teacher to drill students with the claim that 1 is neither even nor odd, to which Fröbel attaches the philosophical afterthought, Integer coordinates of points in Euclidean spaces of two or more dimensions also have a parity, usually defined as the parity of the sum of the coordinates. For instance, the face-centered cubic lattice and its higher-dimensional generalizations, the Dn lattices, consist of all of the integer points whose sum of coordinates is even. This feature manifests itself in chess, where the parity of a square is indicated by its color: bishops are constrained to squares of the same parity; knights alternate parity between moves. This form of parity was famously used to solve the mutilated chessboard problem: if two opposite corner squares are removed from a chessboard, then the remaining board cannot be covered by dominoes, because each domino covers one square of each parity and there are two more squares of one parity than of the other.

[ "Arithmetic", "Algebra", "Pregnancy", "Intrinsic parity", "G-parity", "parity assignment", "Labor details", "Parity problem" ]
Parent Topic
Child Topic
    No Parent Topic