language-icon Old Web
English
Sign In

Irreversible process

In science, a process that is not reversible is called irreversible. This concept arises frequently in thermodynamics. In science, a process that is not reversible is called irreversible. This concept arises frequently in thermodynamics. In thermodynamics, a change in the thermodynamic state of a system and all of its surroundings cannot be precisely restored to its initial state by infinitesimal changes in some property of the system without expenditure of energy. A system that undergoes an irreversible process may still be capable of returning to its initial state. However, the impossibility occurs in restoring the environment to its own initial conditions. An irreversible process increases the entropy of the universe. Because entropy is a state function, the change in entropy of the system is the same, whether the process is reversible or irreversible. The second law of thermodynamics can be used to determine whether a process is reversible or not. Intuitively, a process is reversible if there is no dissipation. For example, Joule expansion is irreversible because initially the system is not uniform. Initially, there is part of the system with gas in it, and part of the system with no gas. For dissipation to occur, there needs to be such a non uniformity. This is just the same as if in a system one section of the gas was hot, and the other cold. Then dissipation would occur; the temperature distribution would become uniform with no work being done, and this would be irreversible because you couldn’t add or remove heat or change the volume to return the system to its initial state. Thus, if the system is always uniform, then the process is reversible, meaning that you can return the system to its original state by either adding or removing heat, doing work on the system, or letting the system do work. As another example, to approximate the expansion in an internal combustion engine as reversible, we would be assuming that the temperature and pressure uniformly change throughout the volume after the spark. Obviously, this is not true and there is a flame front and sometimes even engine knocking. One of the reasons that Diesel engines are able to attain higher efficiency is that the combustion is much more uniform, so less energy is lost to dissipation and the process is closer to reversible. All complex natural processes are irreversible. The phenomenon of irreversibility results from the fact that if a thermodynamic system, which is any system of sufficient complexity, of interacting molecules is brought from one thermodynamic state to another, the configuration or arrangement of the atoms and molecules in the system will change in a way that is not easily predictable. Some 'transformation energy' will be used as the molecules of the 'working body' do work on each other when they change from one state to another. During this transformation, there will be some heat energy loss or dissipation due to intermolecular friction and collisions. This energy will not be recoverable if the process is reversed. Many biological processes that were once thought to be reversible have been found to actually be a pairing of two irreversible processes. Whereas a single enzyme was once believed to catalyze both the forward and reverse chemical changes, research has found that two separate enzymes of similar structure are typically needed to perform what results in a pair of thermodynamically irreversible processes. Thermodynamics defines the statistical behaviour of large numbers of entities, whose exact behavior is given by more specific laws. Since the fundamental theoretical laws of physics are all time-reversible, however experimentally, probability of real reversibility is low, former presuppositions can be fulfilled and/or former state recovered only to higher or lower degree (see: uncertainty principle). The reversibility of thermodynamics must be statistical in nature; that is, that it must be merely highly unlikely, but not impossible, that a system will lower in entropy. The German physicist Rudolf Clausius, in the 1850s, was the first to mathematically quantify the discovery of irreversibility in nature through his introduction of the concept of entropy. In his 1854 memoir 'On a Modified Form of the Second Fundamental Theorem in the Mechanical Theory of Heat,' Clausius states: Simply, Clausius states that it is impossible for a system to transfer heat from a cooler body to a hotter body. For example, a cup of hot coffee placed in an area of room temperature (~72 °F) will transfer heat to its surroundings and thereby cool down with the temperature of the room slightly increasing to (~72.3 °F). However, that same initial cup of coffee will never absorb heat from its surroundings, causing it to grow even hotter, with the temperature of the room decreasing to (~71.7 °F). Therefore, the process of the coffee cooling down is irreversible unless extra energy is added to the system. However, a paradox arose when attempting to reconcile microanalysis of a system with observations of its macrostate. Many processes are mathematically reversible in their microstate when analyzed using classical Newtonian mechanics. This paradox clearly taints microscopic explanations of macroscopic tendency towards equilibrium, such as James Clerk Maxwell's 1860 argument that molecular collisions entail an equalization of temperatures of mixed gases. From 1872 to 1875, Ludwig Boltzmann reinforced the statistical explanation of this paradox in the form of Boltzmann's entropy formula stating that as the number of possible microstates a system might be in, increases, the entropy of the system increases and it becomes less likely that the system will return to an earlier state. His formulas quantified the work done by William Thomson, 1st Baron Kelvin who had argued that:

[ "Quantum mechanics", "Non-equilibrium thermodynamics", "Thermodynamics" ]
Parent Topic
Child Topic
    No Parent Topic