language-icon Old Web
English
Sign In

Dendrimer

Dendrimers are repetitively branched molecules. The name comes from the Greek word δένδρον (dendron) which translates to 'tree'. Synonymous terms for dendrimer include arborols and cascade molecules. However, dendrimer is currently the internationally accepted term. A dendrimer is typically symmetric around the core, and often adopts a spherical three-dimensional morphology. The word dendron is also encountered frequently. A dendron usually contains a single chemically addressable group called the focal point or core. The difference between dendrons and dendrimers is illustrated in the top figure, but the terms are typically encountered interchangeably. Dendrimers are repetitively branched molecules. The name comes from the Greek word δένδρον (dendron) which translates to 'tree'. Synonymous terms for dendrimer include arborols and cascade molecules. However, dendrimer is currently the internationally accepted term. A dendrimer is typically symmetric around the core, and often adopts a spherical three-dimensional morphology. The word dendron is also encountered frequently. A dendron usually contains a single chemically addressable group called the focal point or core. The difference between dendrons and dendrimers is illustrated in the top figure, but the terms are typically encountered interchangeably. The first dendrimers were made by divergent synthesis approaches by Fritz Vögtle in 1978, R.G. Denkewalter at Allied Corporation in 1981, Donald Tomalia at Dow Chemical in 1983 and in 1985, and by George R. Newkome in 1985. In 1990 a convergent synthetic approach was introduced by Craig Hawker and Jean Fréchet. Dendrimer popularity then greatly increased, resulting in more than 5,000 scientific papers and patents by the year 2005. Dendritic molecules are characterized by structural perfection. Dendrimers and dendrons are monodisperse and usually highly symmetric, spherical compounds. The field of dendritic molecules can be roughly divided into low-molecular weight and high-molecular weight species. The first category includes dendrimers and dendrons, and the latter includes dendronized polymers, hyperbranched polymers, and the polymer brush. The properties of dendrimers are dominated by the functional groups on the molecular surface, however, there are examples of dendrimers with internal functionality. Dendritic encapsulation of functional molecules allows for the isolation of the active site, a structure that mimics that of active sites in biomaterials. Also, it is possible to make dendrimers water-soluble, unlike most polymers, by functionalizing their outer shell with charged species or other hydrophilic groups. Other controllable properties of dendrimers include toxicity, crystallinity, tecto-dendrimer formation, and chirality. Dendrimers are also classified by generation, which refers to the number of repeated branching cycles that are performed during its synthesis. For example, if a dendrimer is made by convergent synthesis (see below), and the branching reactions are performed onto the core molecule three times, the resulting dendrimer is considered a third generation dendrimer. Each successive generation results in a dendrimer roughly twice the molecular weight of the previous generation. Higher generation dendrimers also have more exposed functional groups on the surface, which can later be used to customize the dendrimer for a given application. One of the very first dendrimers, the Newkome dendrimer, was synthesized in 1985. This macromolecule is also commonly known by the name arborol. The figure outlines the mechanism of the first two generations of arborol through a divergent route (discussed below). The synthesis is started by nucleophilic substitution of 1-bromopentane by triethyl sodiomethanetricarboxylate in dimethylformamide and benzene. The ester groups were then reduced by lithium aluminium hydride to a triol in a deprotection step. Activation of the chain ends was achieved by converting the alcohol groups to tosylate groups with tosyl chloride and pyridine. The tosyl group then served as leaving groups in another reaction with the tricarboxylate, forming generation two. Further repetition of the two steps leads to higher generations of arborol. Poly(amidoamine), or PAMAM, is perhaps the most well known dendrimer. The core of PAMAM is a diamine (commonly ethylenediamine), which is reacted with methyl acrylate, and then another ethylenediamine to make the generation-0 (G-0) PAMAM. Successive reactions create higher generations, which tend to have different properties. Lower generations can be thought of as flexible molecules with no appreciable inner regions, while medium-sized (G-3 or G-4) do have internal space that is essentially separated from the outer shell of the dendrimer. Very large (G-7 and greater) dendrimers can be thought of more like solid particles with very dense surfaces due to the structure of their outer shell. The functional group on the surface of PAMAM dendrimers is ideal for click chemistry, which gives rise to many potential applications. Dendrimers can be considered to have three major portions: a core, an inner shell, and an outer shell. Ideally, a dendrimer can be synthesized to have different functionality in each of these portions to control properties such as solubility, thermal stability, and attachment of compounds for particular applications. Synthetic processes can also precisely control the size and number of branches on the dendrimer. There are two defined methods of dendrimer synthesis, divergent synthesis and convergent synthesis. However, because the actual reactions consist of many steps needed to protect the active site, it is difficult to synthesize dendrimers using either method. This makes dendrimers hard to make and very expensive to purchase. At this time, there are only a few companies that sell dendrimers; Polymer Factory Sweden AB commercializes biocompatible bis-MPA dendrimers and Dendritech is the only kilogram-scale producers of PAMAM dendrimers. NanoSynthons, LLC from Mount Pleasant, Michigan, USA produces PAMAM dendrimers and other proprietary dendrimers. The dendrimer is assembled from a multifunctional core, which is extended outward by a series of reactions, commonly a Michael reaction. Each step of the reaction must be driven to full completion to prevent mistakes in the dendrimer, which can cause trailing generations (some branches are shorter than the others). Such impurities can impact the functionality and symmetry of the dendrimer, but are extremely difficult to purify out because the relative size difference between perfect and imperfect dendrimers is very small.

[ "Biochemistry", "Organic chemistry", "Inorganic chemistry", "Polymer chemistry", "PAMAM Starburst", "Propylene imine", "Dendrite (metal)", "Dendritic Compounds", "dendritic architecture" ]
Parent Topic
Child Topic
    No Parent Topic