language-icon Old Web
English
Sign In

Intra-aortic balloon pump

The intra-aortic balloon pump (IABP) is a mechanical device that increases myocardial oxygen perfusion and indirectly increases cardiac output through afterload reduction. It consists of a cylindrical polyurethane balloon that sits in the aorta, approximately 2 centimeters (0.79 in) from the left subclavian artery. The balloon inflates and deflates via counter pulsation, meaning it actively deflates in systole and inflates in diastole. Systolic deflation decreases afterload through a vacuum effect and indirectly increases forward flow from the heart. Diastolic inflation increases blood flow to the coronary arteries via retrograde flow. These actions combine to decrease myocardial oxygen demand and increase myocardial oxygen supply. The intra-aortic balloon pump (IABP) is a mechanical device that increases myocardial oxygen perfusion and indirectly increases cardiac output through afterload reduction. It consists of a cylindrical polyurethane balloon that sits in the aorta, approximately 2 centimeters (0.79 in) from the left subclavian artery. The balloon inflates and deflates via counter pulsation, meaning it actively deflates in systole and inflates in diastole. Systolic deflation decreases afterload through a vacuum effect and indirectly increases forward flow from the heart. Diastolic inflation increases blood flow to the coronary arteries via retrograde flow. These actions combine to decrease myocardial oxygen demand and increase myocardial oxygen supply. A computer-controlled mechanism inflates the balloon with helium from a cylinder during diastole, usually linked to either an electrocardiogram (ECG) or a pressure transducer at the distal tip of the catheter; some IABPs, such as the Datascope System 98XT, allow asynchronous counterpulsation at a set rate, though this setting is rarely used. Helium is used because its low viscosity allows it to travel quickly through the long connecting tubes, and has a lower risk than air of causing an embolism should the balloon rupture. The following situations may benefit from this device. The following conditions will always exclude patients for treatment: The following conditions make IABP therapy inadvisable except under pressing circumstances: Since the device is placed in the femoral artery and aorta it could provoke ischemia, and compartment syndrome. The leg is at highest risk of becoming ischemic if the femoral artery it is supplied by becomes obstructed. Placing the balloon too distal from the aortic arch may induce occlusion of the renal artery and subsequent kidney failure. Other possible complications are cerebral embolism during insertion, infection, dissection of the aorta or iliac artery, perforation of the artery and bleeding in the mediastinum. Mechanical failure of the balloon itself is also a risk which entails vascular surgery to remove under that circumstance. After balloon removal there is also a risk of 'embolic shower' from micro clots that have formed on the surface of the balloon, and can lead to peripheral thrombosis, myocardial ischemia, hemodynamic decompensation, and late pseudoaneurysm.

[ "Cardiogenic shock", "balloon pump" ]
Parent Topic
Child Topic
    No Parent Topic