language-icon Old Web
English
Sign In

Phycodnaviridae

Phycodnaviridae is a family of large (100–560kb) double stranded DNA viruses that infect marine or freshwater eukaryotic algae. Viruses within this family are similar morphologically and possess an icosahedral capsid (polyhedron with 20 faces). There are currently 33 species in this family, divided among 6 genera. This family belongs to a super-group of large viruses known as nucleocytoplasmic large DNA viruses. Recently, there is evidence that specific strains of Phycodnaviridae may infect humans rather than just algal species, as was previously believed. Most genera under this family enter the cell of the host by cell receptor endocytosis and replicate in the nucleus. Phycodnaviridae play important ecological roles by regulating the growth and productivity of their algal hosts. Algal species such Heterosigma akashiwo and the genus Chrysochromulina can form dense blooms which can be damaging to fisheries, resulting in losses in the aquaculture industry. 'Heterosigma akashiwo virus' (HaV) has been suggested for use as a microbial agent to prevent the recurrence of toxic red tides produced by this algal species. Furthermore, Phycodnaviridae cause death and lysis of freshwater and marine algal species, liberating organic carbon, nitrogen and phosphorus into the water, providing nutrients for the microbial loop. Group: double-stranded DNA The taxonomy of this family was initially based on host range: chloroviruses infect chlorella-like green algae from freshwaters; whereas, members of the other five genera infect marine microalgae and a some species of brown macroalgae. This was subsequently confirmed by analysis of their B-family DNA polymerases, which indicated that members of the Phycodnaviridae are more closely related to one another, in comparison to other double stranded DNA viruses, forming a monophyletic group. The phycodnaviruses contain six genera: Coccolithovirus, Chlorovirus, Phaeovirus, Prasinovirus, Prymnesiovirus and Raphidovirus. The genera can be distinguished from one another by, for example, differences in life cycle and gene content. All six genera in the family Phycodnaviridae have similar virion structure and morphology. They are large virions that can range between 100–220 nm in diameter. They have a double-stranded DNA genome, and a protein core surrounded by a lipid bilayer and an icosahedral capsid. The capsid has 2, 3 and 5 fold axis of symmetry with 20 equilateral triangle faces composing of protein subunits. In all known members of the Phycodnaviridae the capsid is composed of ordered substructures with 20 trisymmetrons and 12 pentasymmetrons made up of donut-shaped trimeric capsomers, where each capsomer is made up of three monomers of the major capsid protein. If all the trimeric capsomers are identical in structure, the virion capsid contains 5040 copies of the major capsid protein in total with a triangulation number of 169. At the five-fold vertices there are 12 pentamer-capsomers consist of different proteins. The protein(s) that can be found below the axial channel of each pentamer may be responsible for digesting the host cell wall during viral infection. The species Phaeocystis puchetii virus from the genus Prymnesiovirus has the largest capsid structure in the Phycodnaviridae family. The lipid bilayer membrane in phycodnaviruses is not well understood or researched. Some studies suggested that the membrane originates from the endoplasmic reticulum and may also be directly acquired from the host cell membrane during viral assembly. Although members of the family Phycodnaviridae are highly diverse, they share very conserved genes involved with virion morphology or structure. Despite the similarity of the capsid structure of phycodnaviruses, recent experiments have identified morphological differences among members in this family. Emiliania huxleyi virus 86 (EhV-86), a coccolithovirus strain, differs from its algal virus counterparts in that its capsid is enveloped by a lipid membrane. In addition, recent 3D reconstruction experiments revealed that the chlorella virus PBCV-1 has a 250A-long cylindrical spike extending from one of its vertices. EhV-86 may also possess a spike or tail structure. Phycodnaviruses are known for their large double-stranded DNA genomes ranging from 100kb to over 550 kb with 40% to 50% GC content. Currently, complete genome sequences are available for several members of the family Phycodnaviridae (including six chloroviruses, two phaeoviruses, several prasinoviruses and a coccolithovirus) and there are also some partial sequences available for a different coccolithovirus.

[ "Genome", "Chlorella", "Paramecium bursaria Chlorella virus 1", "Coccolithovirus", "Phaeovirus", "Emiliania huxleyi virus", "Chlorella virus PBCV-1" ]
Parent Topic
Child Topic
    No Parent Topic