language-icon Old Web
English
Sign In

Basalt

Basalt (US: /bəˈsɔːlt, ˈbeɪsɒlt/, UK: /ˈbæsɔːlt, ˈbæsəlt/) is a mafic extrusive igneous rock formed from the rapid cooling of magnesium-rich and iron-rich lava exposed at or very near the surface of a terrestrial planet or a moon. More than 90% of all volcanic rock on Earth is basalt. Basalt lava has a low viscosity, due to its low silica content, resulting in rapid lava flows that can spread over great areas before cooling and solidification. Flood basalt describes the formation in a series of lava basalt flows. By definition, basalt is an aphanitic (fine-grained) igneous rock with generally 45–53% silica (SiO2) and less than 10% feldspathoid by volume, and where at least 65% of the rock is feldspar in the form of plagioclase. This is as per definition of the International Union of Geological Sciences (IUGS) classification scheme. It is the most common volcanic rock type on Earth, being a key component of oceanic crust as well as the principal volcanic rock in many mid-oceanic islands, including Iceland, the Faroe Islands, Réunion and the islands of Hawaiʻi. Basalt commonly features a very fine-grained or glassy matrix interspersed with visible mineral grains. The average density is 3.0 g/cm3. Basalt is defined by its mineral content and texture, and physical descriptions without mineralogical context may be unreliable in some circumstances. Basalt is usually grey to black in colour, but rapidly weathers to brown or rust-red due to oxidation of its mafic (iron-rich) minerals into hematite and other iron oxides and hydroxides. Although usually characterized as 'dark', basaltic rocks exhibit a wide range of shading due to regional geochemical processes. Due to weathering or high concentrations of plagioclase, some basalts can be quite light-coloured, superficially resembling andesite to untrained eyes. Basalt has a fine-grained mineral texture due to the molten rock cooling too quickly for large mineral crystals to grow; it is often porphyritic, containing larger crystals (phenocrysts) formed prior to the extrusion that brought the magma to the surface, embedded in a finer-grained matrix. These phenocrysts usually are of olivine or a calcium-rich plagioclase, which have the highest melting temperatures of the typical minerals that can crystallize from the melt. Basalt with a vesicular texture is called vesicular basalt, when the bulk of the rock is mostly solid; when the vesicles are over half the volume of a specimen, it is called scoria. This texture forms when dissolved gases come out of solution and form bubbles as the magma decompresses as it reaches the surface, yet are trapped as the erupted lava hardens before the gases can escape. The term basalt is at times applied to shallow intrusive rocks with a composition typical of basalt, but rocks of this composition with a phaneritic (coarser) groundmass are generally referred to as diabase (also called dolerite) or, when more coarse-grained (crystals over 2 mm across), as gabbro. Gabbro is often marketed commercially as 'black granite.' In the Hadean, Archean, and early Proterozoic eras of Earth's history, the chemistry of erupted magmas was significantly different from today's, due to immature crustal and asthenosphere differentiation. These ultramafic volcanic rocks, with silica (SiO2) contents below 45% are usually classified as komatiites. The word 'basalt' is ultimately derived from Late Latin basaltes, a misspelling of Latin basanites 'very hard stone', which was imported from Ancient Greek βασανίτης (basanites), from βάσανος (basanos, 'touchstone') and perhaps originated in Egyptian bauhun 'slate'. The modern petrological term basalt describing a particular composition of lava-derived rock originates from its use by Georgius Agricola in 1556 in his famous work of mining and mineralogy De re metallica, libri XII. Agricola applied 'basalt' to the volcanic black rock of the Schloßberg (local castle hill) at Stolpen, believing it to be the same as the 'very hard stone' described by Pliny the Elder in Naturalis Historiae. The mineralogy of basalt is characterized by a preponderance of calcic plagioclase feldspar and pyroxene. Olivine can also be a significant constituent. Accessory minerals present in relatively minor amounts include iron oxides and iron-titanium oxides, such as magnetite, ulvöspinel, and ilmenite. Because of the presence of such oxide minerals, basalt can acquire strong magnetic signatures as it cools, and paleomagnetic studies have made extensive use of basalt.

[ "Petrology", "Geochemistry", "Geomorphology", "Paleontology", "Seismology", "Silicic", "Incompatible element", "Magma ocean", "Extrusive", "Europium anomaly" ]
Parent Topic
Child Topic
    No Parent Topic