language-icon Old Web
English
Sign In

Inverse kinematics

Inverse kinematics is the mathematical process of recovering the movements of an object in the world from some other data, such as a film of those movements, or a film of the world as seen by a camera which is itself making those movements. This is useful in robotics and in film animation. Inverse kinematics is the mathematical process of recovering the movements of an object in the world from some other data, such as a film of those movements, or a film of the world as seen by a camera which is itself making those movements. This is useful in robotics and in film animation. In robotics, inverse kinematics makes use of the kinematics equations to determine the joint parameters that provide a desired position for each of the robot's end-effectors. Specification of the movement of a robot so that its end-effectors achieve the desired tasks is known as motion planning. Inverse kinematics transforms the motion plan into joint actuator trajectories for the robot. Similar formulae determine the positions of the skeleton of an animated character that is to move in a particular way in a film, or of a vehicle such as a car or boat containing the camera which is shooting a scene of a film. Once a vehicle's motions are known, they can be used to determine the constantly-changing viewpoint for computer-generated imagery of objects in the landscape such as buildings, so that these objects change in perspective while themselves not appearing to move as the vehicle-borne camera goes past them. The movement of a kinematic chain, whether it is a robot or an animated character, is modeled by the kinematics equations of the chain. These equations define the configuration of the chain in terms of its joint parameters. Forward kinematics uses the joint parameters to compute the configuration of the chain, and inverse kinematics reverses this calculation to determine the joint parameters that achieve a desired configuration.

[ "Kinematics", "Robot", "Bernstein's problem", "joint limit avoidance", "Denavit–Hartenberg parameters", "inverse jacobian", "Forward kinematics" ]
Parent Topic
Child Topic
    No Parent Topic