language-icon Old Web
English
Sign In

Hyperbolic space

In mathematics, a hyperbolic space is a homogeneous space that has a constant negative curvature, where in this case the curvature is the sectional curvature. It is hyperbolic geometry in more than 2 dimensions, and is distinguished from Euclidean spaces with zero curvature that define the Euclidean geometry, and elliptic geometry that have a constant positive curvature. In mathematics, a hyperbolic space is a homogeneous space that has a constant negative curvature, where in this case the curvature is the sectional curvature. It is hyperbolic geometry in more than 2 dimensions, and is distinguished from Euclidean spaces with zero curvature that define the Euclidean geometry, and elliptic geometry that have a constant positive curvature. When embedded to a Euclidean space (of a higher dimension), every point of a hyperbolic space is a saddle point. Another distinctive property is the amount of space covered by the n-ball in hyperbolic n-space: it increases exponentially with respect to the radius of the ball for large radii, rather than polynomially. Hyperbolic n-space, denoted Hn, is the maximally symmetric, simply connected, n-dimensional Riemannian manifold with a constant negative sectional curvature. Hyperbolic space is a space exhibiting hyperbolic geometry. It is the negative-curvature analogue of the n-sphere. Although hyperbolic space Hn is diffeomorphic to Rn, its negative-curvature metric gives it very different geometric properties. Hyperbolic 2-space, H2, is also called the hyperbolic plane. Hyperbolic space, developed independently by Nikolai Lobachevsky and János Bolyai, is a geometrical space analogous to Euclidean space, but such that Euclid's parallel postulate is no longer assumed to hold. Instead, the parallel postulate is replaced by the following alternative (in two dimensions): It is then a theorem that there are infinitely many such lines through P. This axiom still does not uniquely characterize the hyperbolic plane up to isometry; there is an extra constant, the curvature K < 0, which must be specified. However, it does uniquely characterize it up to homothety, meaning up to bijections which only change the notion of distance by an overall constant. By choosing an appropriate length scale, one can thus assume, without loss of generality, that K = −1. Models of hyperbolic spaces that can be embedded in a flat (e.g. Euclidean) spaces may be constructed. In particular, the existence of model spaces implies that the parallel postulate is logically independent of the other axioms of Euclidean geometry. There are several important models of hyperbolic space: the Klein model, the hyperboloid model, the Poincaré ball model and the Poincaré half space model. These all model the same geometry in the sense that any two of them can be related by a transformation that preserves all the geometrical properties of the space, including isometry (though not with respect to the metric of a Euclidean embedding). The hyperboloid model realizes hyperbolic space as a hyperboloid in Rn+1 = {(x0,...,xn)|xi∈R, i=0,1,...,n}. The hyperboloid is the locus Hn of points whose coordinates satisfy

[ "Geometry", "Topology", "Mathematical analysis", "Pure mathematics", "Horosphere" ]
Parent Topic
Child Topic
    No Parent Topic