language-icon Old Web
English
Sign In

Near and far field

The near field and far field are regions of the electromagnetic field (EM) around an object, such as a transmitting antenna, or the result of radiation scattering off an object. Non-radiative 'near-field' behaviours of electromagnetic fields dominate close to the antenna or scattering object, while electromagnetic radiation 'far-field' behaviours dominate at greater distances. The near field and far field are regions of the electromagnetic field (EM) around an object, such as a transmitting antenna, or the result of radiation scattering off an object. Non-radiative 'near-field' behaviours of electromagnetic fields dominate close to the antenna or scattering object, while electromagnetic radiation 'far-field' behaviours dominate at greater distances. Far-field E (electric) and B (magnetic) field strength decreases inversely with distance from the source, resulting in an inverse-square law for the radiated power intensity of electromagnetic radiation. By contrast, near-field E and B strength decrease more rapidly with distance: part decreases by the inverse-distance squared, the other part by an inverse cubed law, resulting in a diminished power in the parts of the electric field by an inverse fourth-power and sixth-power, respectively. The rapid drop in power contained in the near-field ensures that effects due to the near-field essentially vanish a few wavelengths away from the radiating part of the antenna. The far field is the region in which the field acts as 'normal' electromagnetic radiation. In this region, it is dominated by electric or magnetic fields with electric dipole characteristics. The near field is governed by multipole type fields, which can be considered as collections of dipoles with a fixed phase relationship. The boundary between the two regions is only vaguely defined, and it depends on the dominant wavelength (λ) emitted by the source and the size of the radiating element. In the far-field region of an antenna, radiated power decreases as the square of distance, and absorption of the radiation does not feed back to the transmitter. However, in the near-field region, absorption of radiation does affect the load on the transmitter. Magnetic induction as seen in a transformer can be seen as a very simple example of this type of near-field electromagnetic interaction. In the far-field region, each part of the EM field (electric and magnetic) is 'produced by' (or associated with) a change in the other part, and the ratio of electric and magnetic field intensities is simply the wave impedance. However, in the near-field region, the electric and magnetic fields can exist independently of each other, and one type of field can dominate the other. In a normally-operating antenna, positive and negative charges have no way of leaving and are separated from each other by the excitation 'signal' (a transmitter or other EM exciting potential). This generates an oscillating (or reversing) electrical dipole, which affects both the near field and the far field. In general, the purpose of antennas is to communicate wirelessly for long distances using far fields, and this is their main region of operation (however, certain antennas specialized for near-field communication do exist). Also known as the radiation-zone field, the far field carries a relatively uniform wave pattern. The radiation zone is important because far fields in general fall off in amplitude by 1∕r. This means that the total energy per unit area at a distance r is proportional to 1∕r2. The area of the sphere is proportional to r2, so the total energy passing through the sphere is constant. This means that the far-field energy actually escapes to infinite distance (it radiates). In contrast, the near field refers to regions such as near conductors and inside polarizable media where the propagation of electromagnetic waves is interfered with. One easy-to-observe example is the change of noise levels picked up by a set of rabbit ear antennas when one places a body part in close range. The near-field has been of increasing interest, particularly in the development of capacitive sensing technologies such as those used in the touchscreens of smart phones and tablet computers. The interaction with the medium (e.g. body capacitance) can cause energy to deflect back to the source, as occurs in the reactive near field. Or the interaction with the medium can fail to return energy back to the source, but cause a distortion in the electromagnetic wave that deviates significantly from that found in free space, and this indicates the radiative near-field region, which is somewhat further away. Another intermediate region, called the transition zone, is defined on a somewhat different basis, namely antenna geometry and excitation wavelength.

[ "Electronic engineering", "Acoustics", "Optoelectronics", "Quantum mechanics", "Optics", "Acoustic holography", "near field imaging", "Solid immersion lens", "near field coupling", "acoustical holography" ]
Parent Topic
Child Topic
    No Parent Topic