language-icon Old Web
English
Sign In

Hormesis

Hormesis is any process in a cell or organism that exhibits a biphasic response to exposure to increasing amounts of a substance or condition. Within the hormetic zone, there is generally a favorable biological response to low exposures to toxins and other stressors. Hormesis comes from Greek hórmēsis 'rapid motion, eagerness', itself from ancient Greek hormáein 'to set in motion, impel, urge on'. Hormetics is the term proposed for the study and science of hormesis. Hormesis is any process in a cell or organism that exhibits a biphasic response to exposure to increasing amounts of a substance or condition. Within the hormetic zone, there is generally a favorable biological response to low exposures to toxins and other stressors. Hormesis comes from Greek hórmēsis 'rapid motion, eagerness', itself from ancient Greek hormáein 'to set in motion, impel, urge on'. Hormetics is the term proposed for the study and science of hormesis. In toxicology, hormesis is a dose response phenomenon characterized by a low dose stimulation, high dose inhibition, resulting in either a J-shaped or an inverted U-shaped dose response. Such environmental factors that would seem to produce positive responses have also been termed 'eustress'. The hormesis model of dose response is vigorously debated. The notion that hormesis is important for chemical risks regulations is not widely accepted. The biochemical mechanisms by which hormesis works remain under laboratory research and are not well understood. German pharmacologist Hugo Schulz first described such a phenomenon in 1888 following his own observations that the growth of yeast could be stimulated by small doses of poisons. This was coupled with the work of German physician Rudolph Arndt, who studied animals given low doses of drugs, eventually giving rise to the Arndt-Schulz rule. Arndt's advocacy of homeopathy contributed to the rule's diminished credibility in the 1920s and 1930s. The term 'hormesis' was coined and used for the first time in a scientific paper by Chester M. Southam and J. Ehrlich in 1943 in the journal: Phytopathology, volume 33, pp. 517–541.Recently, Edward Calabrese has revived the concept of hormesis. Individuals with low levels of physical activity are at risk for high levels of oxidative stress, as are individuals engaged in highly intensive exercise programs; however individuals engaged in moderately intensive, regular exercise experience lower levels of oxidative stress. High levels of oxidative stress have been linked by some with the increased incidence of a variety of diseases. It has been claimed that this relationship, characterized by positive effects at an intermediate dose of the stressor (exercise), is characteristic of hormesis. However, it is important to point out that there is evidence that the oxidative stress associated with intensive exercise may have long-term health benefits. This would imply that oxidative stress, itself, provides an example of hormesis (see section on Mitochondrial hormesis), but physical exercise does not. Alcohol is believed to be hormetic in preventing heart disease and stroke, although the benefits of light drinking may have been exaggerated. In 2012, researchers at UCLA found that tiny amounts (1 mM, or 0.005%) of ethanol doubled the lifespan of Caenorhabditis elegans, a round worm frequently used in biological studies, that were starved of other nutrients. Higher doses of 0.4% provided no longevity benefit. However, worms exposed to 0.005% did not develop normally (their development was arrested). The authors argue that the worms were using ethanol as an alternative energy source in the absence of other nutrition, or had initiated a stress response. They did not test the effect of ethanol on worms fed a normal diet. In 2010, a paper published in the journal Environmental Toxicology & Chemistry showed that low doses of methylmercury, a potent neurotoxic pollutant, improved the hatching rate of mallard eggs. The author of the study, Gary Heinz, who led the study for the U.S. Geological Survey at the Patuxent Wildlife Research Center in Beltsville, Md., stated that other explanations are possible. For instance, it is possible that the flock he studied might have harbored some low, subclinical infection and that mercury, well known to be antimicrobial, might have killed the infection that otherwise hurt reproduction in the untreated birds.

[ "Toxicology", "Biochemistry", "Organic chemistry", "Diabetes mellitus", "Endocrinology", "Hormetic Dose-Responses", "Radiation hormesis" ]
Parent Topic
Child Topic
    No Parent Topic