language-icon Old Web
English
Sign In

Nuclear power plant

A nuclear power plant is a thermal power station in which the heat source is a nuclear reactor. As it is typical of thermal power stations, heat is used to generate steam that drives a steam turbine connected to a generator that produces electricity. As of 2014, the International Atomic Energy Agency reports there are 450 nuclear power reactors in operation in 31 countries. A nuclear power plant is a thermal power station in which the heat source is a nuclear reactor. As it is typical of thermal power stations, heat is used to generate steam that drives a steam turbine connected to a generator that produces electricity. As of 2014, the International Atomic Energy Agency reports there are 450 nuclear power reactors in operation in 31 countries. Nuclear plants are usually considered to be base load stations since fuel is a small part of the cost of production and because they cannot be easily or quickly dispatched. Their operations and maintenance and fuel costs are, along with hydropower stations, at the low end of the spectrum and make them suitable as base-load power suppliers. The cost of spent fuel management, however, is somewhat uncertain. Electricity was generated by a nuclear reactor for the first time ever on September 3, 1948, at the X-10 Graphite Reactor in Oak Ridge, Tennessee, which was the first nuclear power station to power a light bulb. The second, larger experiment occurred on December 20, 1951, at the EBR-I experimental station near Arco, Idaho. On June 27, 1954, the world's first nuclear power station to generate electricity for a power grid, the Obninsk Nuclear Power Plant, started operations in Obninsk, the Soviet Union. The world's first full scale power station, Calder Hall in England, opened on October 17, 1956. The world's first full scale power station solely devoted to electricity production—Calder Hall was also meant to produce plutonium—the Shippingport Atomic Power Station—was connected to the grid on December 18, 1957. The conversion to electrical energy takes place indirectly, as in conventional thermal power stations. The fission in a nuclear reactor heats the reactor coolant. The coolant may be water or gas, or even liquid metal, depending on the type of reactor. The reactor coolant then goes to a steam generator and heats water to produce steam. The pressurized steam is then usually fed to a multi-stage steam turbine. After the steam turbine has expanded and partially condensed the steam, the remaining vapor is condensed in a condenser. The condenser is a heat exchanger which is connected to a secondary side such as a river or a cooling tower. The water is then pumped back into the steam generator and the cycle begins again. The water-steam cycle corresponds to the Rankine cycle. The nuclear reactor is the heart of the station. In its central part, the reactor's core produces heat due to nuclear fission. With this heat, a coolant is heated as it is pumped through the reactor and thereby removes the energy from the reactor. Heat from nuclear fission is used to raise steam, which runs through turbines, which in turn powers the electrical generators.

[ "Forensic engineering", "Nuclear engineering", "Nuclear physics", "Waste management", "fukushima daiichi", "Fukushima Nuclear Accident", "Nuclear energy policy", "RBMK", "Equipment Qualification" ]
Parent Topic
Child Topic
    No Parent Topic