language-icon Old Web
English
Sign In

Non-homologous end joining

Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. NHEJ is referred to as 'non-homologous' because the break ends are directly ligated without the need for a homologous template, in contrast to homology directed repair, which requires a homologous sequence to guide repair. The term 'non-homologous end joining' was coined in 1996 by Moore and Haber. Non-homologous end joining (NHEJ) is a pathway that repairs double-strand breaks in DNA. NHEJ is referred to as 'non-homologous' because the break ends are directly ligated without the need for a homologous template, in contrast to homology directed repair, which requires a homologous sequence to guide repair. The term 'non-homologous end joining' was coined in 1996 by Moore and Haber. NHEJ typically utilizes short homologous DNA sequences called microhomologies to guide repair. These microhomologies are often present in single-stranded overhangs on the ends of double-strand breaks. When the overhangs are perfectly compatible, NHEJ usually repairs the break accurately. Imprecise repair leading to loss of nucleotides can also occur, but is much more common when the overhangs are not compatible. Inappropriate NHEJ can lead to translocations and telomere fusion, hallmarks of tumor cells. NHEJ is evolutionarily conserved throughout all kingdoms of life and is the predominant double-strand break repair pathway in mammalian cells. In budding yeast (Saccharomyces cerevisiae), however, homologous recombination dominates when the organism is grown under common laboratory conditions. When the NHEJ pathway is inactivated, double-strand breaks can be repaired by a more error-prone pathway called microhomology-mediated end joining (MMEJ). In this pathway, end resection reveals short microhomologies on either side of the break, which are then aligned to guide repair. This contrasts with classical NHEJ, which typically uses microhomologies already exposed in single-stranded overhangs on the DSB ends. Repair by MMEJ therefore leads to deletion of the DNA sequence between the microhomologies. Many species of bacteria, including Escherichia coli, lack an end joining pathway and thus rely completely on homologous recombination to repair double-strand breaks. NHEJ proteins have been identified in a number of bacteria, however, including Bacillus subtilis, Mycobacterium tuberculosis, and Mycobacterium smegmatis. Bacteria utilize a remarkably compact version of NHEJ in which all of the required activities are contained in only two proteins: a Ku homodimer and the multifunctional ligase/polymerase/nuclease LigD. In mycobacteria, NHEJ is much more error prone than in yeast, with bases often added to and deleted from the ends of double-strand breaks during repair. Many of the bacteria that possess NHEJ proteins spend a significant portion of their life cycle in a stationary haploid phase, in which a template for recombination is not available. NHEJ may have evolved to help these organisms survive DSBs induced during desiccation. Corndog and Omega, two related mycobacteriophages of Mycobacterium smegmatis, also encode Ku homologs and exploit the NHEJ pathway to recircularize their genomes during infection. Unlike homologous recombination, which has been studied extensively in bacteria, NHEJ was originally discovered in eukaryotes and was only identified in prokaryotes in the past decade. In contrast to bacteria, NHEJ in eukaryotes utilizes a number of proteins, which participate in the following steps: In yeast, the Mre11-Rad50-Xrs2 (MRX) complex is recruited to DSBs early and is thought to promote bridging of the DNA ends. The corresponding mammalian complex of Mre11-Rad50-Nbs1 (MRN) is also involved in NHEJ, but it may function at multiple steps in the pathway beyond simply holding the ends in proximity. DNA-PKcs is also thought to participate in end bridging during mammalian NHEJ. Eukaryotic Ku is a heterodimer consisting of Ku70 and Ku80, and forms a complex with DNA-PKcs, which is present in mammals but absent in yeast. Ku is a basket-shaped molecule that slides onto the DNA end and translocates inward. Ku may function as a docking site for other NHEJ proteins, and is known to interact with the DNA ligase IV complex and XLF.

[ "Homologous recombination", "DNA repair", "DNA damage", "Recombination", "Ku80", "Non-allelic homologous recombination", "LIG4 syndrome", "Ku Heterodimer", "DCLRE1C Gene" ]
Parent Topic
Child Topic
    No Parent Topic