language-icon Old Web
English
Sign In

Plasma acceleration

Plasma acceleration is a technique for accelerating charged particles, such as electrons, positrons, and ions, using the electric field associated with electron plasma wave or other high-gradient plasma structures (like shock and sheath fields). The plasma acceleration structures are created either using ultra-short laser pulses or energetic particle beams that are matched to the plasma parameters. These techniques offer a way to build high performance particle accelerators of much smaller size than conventional devices. The basic concepts of plasma acceleration and its possibilities were originally conceived by Toshiki Tajima and Prof. John M. Dawson of UCLA in 1979. The initial experimental designs for a 'wakefield' accelerator were conceived at UCLA by Prof. Chan Joshi et al. Current experimental devices show accelerating gradients several orders of magnitude better than current particle accelerators over very short distances, and about one order of magnitude better (1 GeV/m vs 0.1 GeV/m for an RF accelerator) at the one meter scale. Plasma acceleration is a technique for accelerating charged particles, such as electrons, positrons, and ions, using the electric field associated with electron plasma wave or other high-gradient plasma structures (like shock and sheath fields). The plasma acceleration structures are created either using ultra-short laser pulses or energetic particle beams that are matched to the plasma parameters. These techniques offer a way to build high performance particle accelerators of much smaller size than conventional devices. The basic concepts of plasma acceleration and its possibilities were originally conceived by Toshiki Tajima and Prof. John M. Dawson of UCLA in 1979. The initial experimental designs for a 'wakefield' accelerator were conceived at UCLA by Prof. Chan Joshi et al. Current experimental devices show accelerating gradients several orders of magnitude better than current particle accelerators over very short distances, and about one order of magnitude better (1 GeV/m vs 0.1 GeV/m for an RF accelerator) at the one meter scale. Plasma accelerators have immense promise for innovation of affordable and compact accelerators for various applications ranging from high energy physics to medical and industrial applications. Medical applications include betatron and free-electron light sources for diagnostics or radiation therapy and protons sources for hadron therapy. Plasma accelerators generally use wakefields generated by plasma density waves. However, plasma accelerators can operate in many different regimes depending upon the characteristics of the plasmas used. For example, an experimental laser plasma accelerator at Lawrence Berkeley National Laboratory accelerates electrons to 1 GeV over about 3.3 cm (5.4x1020 gn), and one conventional accelerator (highest electron energy accelerator) at SLAC requires 64 m to reach the same energy. Similarly, using plasmas an energy gain of more than 40 GeV was achieved using the SLAC SLC beam (42 GeV) in just 85 cm using a plasma wakefield accelerator (8.9x1020 gn). Once fully developed, the technology could replace many of the traditional RF accelerators currently found in particle colliders, hospitals, and research facilities. The Texas Petawatt laser facility at the University of Texas at Austin accelerated electrons to 2 GeV over about 2 cm (1.6x1021 gn). This record was broken (by more than 2x) in 2014 by the scientists at the BELLA (laser) Center at the Lawrence Berkeley National Laboratory, when they produced electron beams up to 4.25 GeV. In late 2014, researchers from SLAC National Accelerator Laboratory using the Facility for Advanced Accelerator Experimental Tests (FACET) published proof of the viability of plasma acceleration technology. It was shown to be able to achieve 400 to 500 times higher energy transfer compared to a general linear accelerator design. A proof-of-principle plasma wakefield accelerator experiment using a 400 GeV proton beam from the Super Proton Synchrotron is currently operating at CERN. The experiment, named AWAKE, started experiments at the end of 2016. A plasma consists of a fluid of positive and negative charged particles, generally created by heating or photo-ionizing (direct / tunneling / multi-photon / barrier-suppression) a dilute gas. Under normal conditions the plasma will be macroscopically neutral (or quasi-neutral), an equal mix of electrons and ions in equilibrium. However, if a strong enough external electric or electromagnetic field is applied, the plasma electrons, which are very light in comparison to the background ions (by a factor of 1836), will separate spatially from the massive ions creating a charge imbalance in the perturbed region. A particle injected into such a plasma would be accelerated by the charge separation field, but since the magnitude of this separation is generally similar to that of the external field, apparently nothing is gained in comparison to a conventional system that simply applies the field directly to the particle. But, the plasma medium acts as the most efficient transformer (currently known) of the transverse field of an electromagnetic wave into longitudinal fields of a plasma wave. In existing accelerator technology various appropriately designed materials are used to convert from transverse propagating extremely intense fields into longitudinal fields that the particles can get a kick from. This process is achieved using two approaches: standing-wave structures (such as resonant cavities) or traveling-wave structures such as disc-loaded waveguides etc. But, the limitation of materials interacting with higher and higher fields is that they eventually get destroyed through ionization and breakdown. Here the plasma accelerator science provides the breakthrough to generate, sustain, and exploit the highest fields ever produced by science in the laboratory. What makes the system useful is the possibility of introducing waves of very high charge separation that propagate through the plasma similar to the traveling-wave concept in the conventional accelerator. The accelerator thereby phase-locks a particle bunch on a wave and this loaded space-charge wave accelerates them to higher velocities while retaining the bunch properties. Currently, plasma wakes are excited by appropriately shaped laser pulses or electron bunches. Plasma electrons are driven out and away from the center of wake by the ponderomotive force or the electrostatic fields from the exciting fields (electron or laser). Plasma ions are too massive to move significantly and are assumed to be stationary at the time-scales of plasma electron response to the exciting fields. As the exciting fields pass through the plasma, the plasma electrons experience a massive attractive force back to the center of the wake by the positive plasma ions chamber, bubble or column that have remained positioned there, as they were originally in the unexcited plasma. This forms a full wake of an extremely high longitudinal (accelerating) and transverse (focusing) electric field. The positive charge from ions in the charge-separation region then creates a huge gradient between the back of the wake, where there are many electrons, and the middle of the wake, where there are mostly ions. Any electrons in between these two areas will be accelerated (in self-injection mechanism). In the external bunch injection schemes the electrons are strategically injected to arrive at the evacuated region during maximum excursion or expulsion of the plasma electrons. A beam-driven wake can be created by sending a relativistic proton or electron bunch into an appropriate plasma or gas. In some cases, the gas can be ionized by the electron bunch, so that the electron bunch both creates the plasma and the wake. This requires an electron bunch with relatively high charge and thus strong fields. The high fields of the electron bunch then push the plasma electrons out from the center, creating the wake.

[ "Plasma", "Acceleration", "Electron", "Beam (structure)", "Laser" ]
Parent Topic
Child Topic
    No Parent Topic