language-icon Old Web
English
Sign In

Packet radio

Packet radio is a digital radio communications mode used to send packets of data. Packet radio uses packet switching to transmit datagrams. This is very similar to how packets of data are transferred between nodes on the Internet. Packet radio can be used to transmit data long distances. Packet radio is a digital radio communications mode used to send packets of data. Packet radio uses packet switching to transmit datagrams. This is very similar to how packets of data are transferred between nodes on the Internet. Packet radio can be used to transmit data long distances. Packet radio is frequently used by amateur radio operators. The AX.25 (Amateur X.25) protocol was derived from the X.25 data link layer protocol and adapted for amateur radio use. Every AX.25 packet includes the sender's amateur radio callsign, which satisfies the US FCC requirements for amateur radio station identification. AX.25 allows other stations to automatically repeat packets to extend the range of transmissions. It is possible for any packet station to act as a digipeater, linking distant stations with each other through ad hoc networks. This makes packet radio especially useful for emergency communications. Packet radio can be used in mobile communications. Some mobile packet radio stations transmit their location periodically using the Automatic Packet Reporting System (APRS). If the APRS packet is received by an 'igate' station, position reports and other messages can be routed to an internet server, and made accessible on a public web page. This allows amateur radio operators to track the locations of vehicles, hikers, high-altitude balloons, etc., along with telemetry and other messages around the world. Earlier digital radio communications modes were telegraphy (using Morse code), teleprinter (using Baudot code) and facsimile. Since radio circuits inherently possess a broadcast network topology (i.e., many or all nodes are connected to the network simultaneously), one of the first technical challenges faced in the implementation of packet radio networks was a means to control access to a shared communication channel. Professor Norman Abramson of the University of Hawaii led development a packet radio network known as ALOHAnet and performed a number of experiments beginning in the 1970s to develop methods to arbitrate access to a shared radio channel by network nodes. This system operated on UHF frequencies at 9,600 baud. From this work the Aloha multiple access protocol was derived. Subsequent enhancements in channel access techniques made by Leonard Kleinrock et al. in 1975 would lead Robert Metcalfe to use carrier sense multiple access (CSMA) protocols in the design of the now commonplace Ethernet local area network (LAN) technology. Over 1973–76, DARPA created a packet radio network called PRNET in the San Francisco Bay area and conducted a series of experiments with SRI to verify the use of ARPANET (a precursor to the Internet) communications protocols (later known as IP) over packet radio links between mobile and fixed network nodes. This system was quite advanced, as it made use of direct sequence spread spectrum (DSSS) modulation and forward error correction (FEC) techniques to provide 100 kbit/s and 400 kbit/s data channels. These experiments were generally considered to be successful, and also marked the first demonstration of Internetworking, as in these experiments data was routed between the ARPANET, PRNET, and SATNET (a satellite packet radio network) networks. Throughout the 1970s and 1980s, DARPA operated a number of terrestrial and satellite packet radio networks connected to the ARPANET at various military and government installations. Amateur radio operators began experimenting with packet radio in 1978, when—after obtaining authorization from the Canadian government—Robert Rouleau, VE2PY; Bram Frank, VE2BFH; Norm Pearl, VE2BQS; and Jacques Orsali, VE2EHP of the Montreal Amateur Radio Club Montreal, Quebec began experimenting with transmitting ASCII encoded data over VHF amateur radio frequencies using homebuilt equipment. In 1980, Doug Lockhart VE7APU, and the Vancouver Area Digital Communications Group (VADCG) in Vancouver, British Columbia began producing standardized equipment (Terminal Node Controllers) in quantity for use in amateur packet radio networks. In 2003, Rouleau was inducted into CQ Amateur Radio magazine's hall of fame for his work on the Montreal Protocol in 1978. Not long after this activity began in Canada, amateurs in the US became interested in packet radio. In 1980, the United States Federal Communications Commission (FCC) granted authorization for United States amateurs to transmit ASCII codes via amateur radio. Repeaters may be designed for amateur packet radio, these are dubbed 'digipeaters'. The first known amateur packet radio activity in the US occurred in San Francisco during December 1980, when a packet repeater was put into operation on 2 meters by Hank Magnuski KA6M, and the Pacific Packet Radio Society (PPRS). In keeping with the dominance of DARPA and ARPANET at the time, the nascent amateur packet radio network was dubbed the AMPRNet in DARPA style. Magnuski obtained IP address allocations in the 44.0.0.0/8 network for amateur radio use worldwide.

[ "General Packet Radio Service", "Communication channel", "Network packet", "packet radio networks", "High-speed multimedia radio", "inhibit sense multiple access", "Automatic Packet Reporting System", "AX.25", "Terminal node controller" ]
Parent Topic
Child Topic
    No Parent Topic