language-icon Old Web
English
Sign In

Ozone

Ozone /ˈoʊzoʊn/, or trioxygen, is an inorganic molecule with the chemical formula O3. It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope O2, breaking down in the lower atmosphere to O2 (dioxygen). Ozone is formed from dioxygen by the action of ultraviolet light (UV) and electrical discharges within the Earth's atmosphere. It is present in very low concentrations throughout the latter, with its highest concentration high in the ozone layer of the stratosphere, which absorbs most of the Sun's ultraviolet (UV) radiation.'Even very low concentrations of ozone can be harmful to the upper respiratory tract and the lungs. The severity of injury depends on both by the concentration of ozone and the duration of exposure. Severe and permanent lung injury or death could result from even a very short-term exposure to relatively low concentrations.'Nascent oxygen ODioxygen (singlet and triplet)O2Trioxygen (Ozone) O3Tetraoxygen O4Octaoxygen O8 Ozone /ˈoʊzoʊn/, or trioxygen, is an inorganic molecule with the chemical formula O3. It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope O2, breaking down in the lower atmosphere to O2 (dioxygen). Ozone is formed from dioxygen by the action of ultraviolet light (UV) and electrical discharges within the Earth's atmosphere. It is present in very low concentrations throughout the latter, with its highest concentration high in the ozone layer of the stratosphere, which absorbs most of the Sun's ultraviolet (UV) radiation. Ozone's odour is reminiscent of chlorine, and detectable by many people at concentrations of as little as 0.1 ppm in air. Ozone's O3 structure was determined in 1865. The molecule was later proven to have a bent structure and to be diamagnetic. In standard conditions, ozone is a pale blue gas that condenses at progressively cryogenic temperatures to a dark blue liquid and finally a violet-black solid. Ozone's instability with regard to more common dioxygen is such that both concentrated gas and liquid ozone may decompose explosively at elevated temperatures or fast warming to the boiling point.It is therefore used commercially only in low concentrations. Ozone is a powerful oxidant (far more so than dioxygen) and has many industrial and consumer applications related to oxidation. This same high oxidising potential, however, causes ozone to damage mucous and respiratory tissues in animals, and also tissues in plants, above concentrations of about 0.1 ppm. While this makes ozone a potent respiratory hazard and pollutant near ground level, a higher concentration in the ozone layer (from two to eight ppm) is beneficial, preventing damaging UV light from reaching the Earth's surface. The trivial name ozone is the most commonly used and preferred IUPAC name. The systematic names 2λ4-trioxidiene and catena-trioxygen, valid IUPAC names, are constructed according to the substitutive and additive nomenclatures, respectively. The name ozone derives from ozein (ὄζειν), the Greek verb for smell, referring to ozone's distinctive smell. In appropriate contexts, ozone can be viewed as trioxidane with two hydrogen atoms removed, and as such, trioxidanylidene may be used as a context-specific systematic name, according to substitutive nomenclature. By default, these names pay no regard to the radicality of the ozone molecule. In even more specific context, this can also name the non-radical singlet ground state, whereas the diradical state is named trioxidanediyl. Trioxidanediyl (or ozonide) is used, non-systematically, to refer to the substituent group (-OOO-). Care should be taken to avoid confusing the name of the group for the context-specific name for ozone given above. In 1785, the Dutch chemist Martinus van Marum was conducting experiments involving electrical sparking above water when he noticed an unusual smell, which he attributed to the electrical reactions, failing to realize that he had in fact created ozone. A half century later, Christian Friedrich Schönbein noticed the same pungent odour and recognized it as the smell often following a bolt of lightning. In 1839, he succeeded in isolating the gaseous chemical and named it 'ozone', from the Greek word ozein (ὄζειν) meaning 'to smell'. For this reason, Schönbein is generally credited with the discovery of ozone. The formula for ozone, O3, was not determined until 1865 by Jacques-Louis Soret and confirmed by Schönbein in 1867. For much of the second half of the nineteenth century and well into the twentieth, ozone was considered a healthy component of the environment by naturalists and health-seekers. Beaumont, California had as its official slogan 'Beaumont: Zone of Ozone', as evidenced on postcards and Chamber of Commerce letterhead. Naturalists working outdoors often considered the higher elevations beneficial because of their ozone content. 'There is quite a different atmosphere with enough ozone to sustain the necessary energy ', wrote naturalist Henry Henshaw, working in Hawaii. Seaside air was considered to be healthy because of its believed ozone content; but the smell giving rise to this belief is in fact that of halogenated seaweed metabolites.

[ "Atmospheric sciences", "Meteorology", "Organic chemistry", "Photochemical Assessment Monitoring Station", "ozone degradation", "ozone concentration", "Antiozonant", "Ethylene diurea" ]
Parent Topic
Child Topic
    No Parent Topic