language-icon Old Web
English
Sign In

Coronagraph

A coronagraph is a telescopic attachment designed to block out the direct light from a star so that nearby objects – which otherwise would be hidden in the star's bright glare – can be resolved. Most coronagraphs are intended to view the corona of the Sun, but a new class of conceptually similar instruments (called stellar coronagraphs to distinguish them from solar coronagraphs) are being used to find extrasolar planets and circumstellar disks around nearby stars as well as host galaxies in quasars and other similar objects with active galactic nuclei (AGN). A coronagraph is a telescopic attachment designed to block out the direct light from a star so that nearby objects – which otherwise would be hidden in the star's bright glare – can be resolved. Most coronagraphs are intended to view the corona of the Sun, but a new class of conceptually similar instruments (called stellar coronagraphs to distinguish them from solar coronagraphs) are being used to find extrasolar planets and circumstellar disks around nearby stars as well as host galaxies in quasars and other similar objects with active galactic nuclei (AGN). The coronagraph was introduced in 1931 by the French astronomer Bernard Lyot; since then, coronagraphs have been used at many solar observatories. Coronagraphs operating within Earth's atmosphere suffer from scattered light in the sky itself, due primarily to Rayleigh scattering of sunlight in the upper atmosphere. At view angles close to the Sun, the sky is much brighter than the background corona even at high altitude sites on clear, dry days. Ground-based coronagraphs, such as the High Altitude Observatory's Mark IV Coronagraph on top of Mauna Loa, use polarization to distinguish sky brightness from the image of the corona: both coronal light and sky brightness are scattered sunlight and have similar spectral properties, but the coronal light is Thomson-scattered at nearly a right angle and therefore undergoes scattering polarization, while the superimposed light from the sky near the Sun is scattered at only a glancing angle and hence remains nearly unpolarized. Coronagraph instruments are extreme examples of stray light rejection and precise photometry because the total brightness from the solar corona is less than one millionth (10−6) the brightness of the Sun. The apparent surface brightness is even fainter because, in addition to delivering less total light, the corona has a much greater apparent size than the Sun itself. During a total solar eclipse, the Moon acts as an occluding disk and any camera in the eclipse path may be operated as a coronagraph until the eclipse is over. More common is an arrangement where the sky is imaged onto an intermediate focal plane containing an opaque spot; this focal plane is reimaged onto a detector. Another arrangement is to image the sky onto a mirror with a small hole: the desired light is reflected and eventually reimaged, but the unwanted light from the star goes through the hole and does not reach the detector. Either way, the instrument design must take into account scattering and diffraction to make sure that as little unwanted light as possible reaches the final detector. Lyot's key invention was an arrangement of lenses with stops, known as Lyot stops, and baffles such that light scattered by diffraction was focused on the stops and baffles, where it could be absorbed, while light needed for a useful image missed them. As an example, imaging instruments on the Hubble Space Telescope offer coronagraphic capability. A band-limited coronagraph uses a special kind of mask called a band-limited mask. This mask is designed to block light and also manage diffraction effects caused by removal of the light. The band-limited coronagraph has served as the baseline design for the canceled Terrestrial Planet Finder coronagraph. Band-limited masks will also be available on the James Webb Space Telescope. See also: A phase-mask coronagraph (such as the so-called four-quadrant phase-mask coronagraph) uses a transparent mask to shift the phase of the stellar light in order to create a self-destructive interference, rather than a simple opaque disc to block it. See also: An optical vortex coronagraph uses a phase-mask in which the phase-shift varies azimuthally around the center. Several varieties of optical vortex coronagraphs exist:

[ "Exoplanet", "Corona", "Methods of detecting exoplanets", "Lyot stop", "Wide Field Infrared Survey Telescope", "Gemini Planet Imager", "Large Angle and Spectrometric Coronagraph" ]
Parent Topic
Child Topic
    No Parent Topic